Skip to main content

Model-Based Fault Diagnosis and Fault Tolerant Control

  • Chapter
  • First Online:

Abstract

The concepts of quantitative fault diagnosis and fault tolerant control are introduced in this chapter. After a thorough introduction, the notion of analytical redundancy relations (ARRs), residuals, and structural analysis for fault diagnosis and isolation (FDI) are presented. Causal structure of bond graph model is exploited to derive the ARRs which are analyzed in real-time for FDI. Fault accommodation is performed through system reconfiguration so that suitably chosen redundant devices are activated in place of faulty components. Such management of operating modes is handled through a well-developed algorithm based on availability of healthy components and their functional associations to achieve the desired objectives. An example application concerning actuator failure in an electric vehicle is considered. In the next step, diagnosis of uncertain parameter systems is discussed where uncertainties are included in the ARRs so that false alarms and misdetections can be avoided. Parametric uncertainties are modeled through linear fractional transformation in bond graph form and bounding adaptive thresholds are derived for residual signals. This approach leads to robust diagnosis of uncertain systems which is demonstrated through an example mechatronic system application.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This example is taken from these authors’ previous work published in [73].

References

  1. G. Acosta, C.A. González, B. Pulido, Basic tasks for knowledge-based supervision in process control. Eng. Appl. Artif. Intell. 14(4), 441–455 (2001)

    Article  Google Scholar 

  2. O. Adort, D. Maquin, J. Ragot, Fault detection with model parameter structured uncertainties, in European Control Conference ECC’99, 1999

    Google Scholar 

  3. A. Albagul, M. Wahyudi, Dynamic modelling and adaptive traction control for mobile robots. Int. J. Adv. Robot. Syst. 1(3), 149–154 (2004)

    Google Scholar 

  4. J. Armengol, L. Travé-Massuyès, J. Vehí, J.L. De la Rosa, A survey on interval model simulators and their properties related to fault detection. Annu. Rev. Control 24, 31–39 (2000)

    Google Scholar 

  5. J. Armengol, J. Vehi, M.A. Sainz, P. Herrero, Fault detection in a pilot plant using interval models and multiple sliding windows, in SAFEPROCESS 2003, ed. by N. Eva Wu (IFAC, Washington DC) June 2003, pp. 729–734

    Google Scholar 

  6. K. Åström, P. Albertos, M. Blanke, A. Isidori, Control of Complex Systems (Springer, London, 2001)

    Book  MATH  Google Scholar 

  7. M. Basseville, On-board element fault detection and isolation using the statistical local approach. Automatica 34(11), 1359–1373 (1998)

    Article  MATH  Google Scholar 

  8. M. Basseville, G. Benveniste, G. Moustakides, A. Rougée, Detection and diagnosis of changes in the eigenstructure of nonstationary multivariable systems. Automatica 23, 479–489 (1987)

    Article  MATH  Google Scholar 

  9. M. Basseville, I.V. Nikiforov, Detection of Abrupt Changes: Theory and Application (Prentice Hall, Englewood Cliffs, 1993), ISBN 0-13-126780-9

    Google Scholar 

  10. M. Blanke, M. Kinnaert, J. Lunze, M. Staroswiecki, Diagnosis and Fault Tolerant Control (Springer, Berlin, 2003)

    Google Scholar 

  11. G. Bloch, M. Ouladsine, P. Thomas, On-line fault diagnosis of dynamic systems via robust parameter estimation. Control Eng. Pract. 12(3), 1709–1717 (1995)

    Article  Google Scholar 

  12. G.E. Box, G.C. Tiao, Bayesian Inference in Statistical Analysis (Addison-Wesley, Reading, 1973)

    Google Scholar 

  13. P. Castaldi, W. Geri, M. Montanari, A. Tilli, A new adaptive approach for on-line parameter and state estimation of induction motors. Control Eng. Pract. 13, 81–94 (2005)

    Article  Google Scholar 

  14. J. Chen, R. Patton, H. Zhang, Design of unknown input observers and robust fault detection filters. Int. J. Control 63, 85–105 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Chen, R.J. Patton, Robust Model-Based Fault Diagnosis for Dynamic Systems (Kluwer Academic Publisher, Dordrecht, 1999)

    Book  MATH  Google Scholar 

  16. C. Commault, J.M. Dion, O. Sename, R. Motyeian, Observer-based fault detection and isolation for structured systems. IEEE Trans. Autom. Control 47(12), 2074–2079 (2002)

    Article  MathSciNet  Google Scholar 

  17. M. Darouach, M. Zasadzinski, S.J. Xu, Full-order observers for linear systems with unknown inputs. IEEE Trans. Autom. Control 39(3), 606–609 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. G. Dauphin-Tanguy, C. Siè Kam, How to model parameter uncertainties in a bond graph framework. ESS 99, pp. 121–125, 1999

    Google Scholar 

  19. L. Dinca, T. Aldemir, G. Rizzoni, Fault detection and identification in dynamic systems with noisy data and parameter/modeling uncertainties. Reliab. Eng. Syst. Saf. 65(1), 17–28 (1999)

    Article  Google Scholar 

  20. S. Diop, Elimination in control theory. Math. Control Signals Syst. 4, 17–32 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. M.A. Djeziri, R. Merzouki, B. Ould Bouamama, Robust monitoring of an electric vehicle with structured and unstructured uncertainties. IEEE Trans. Veh. Technol. 58, 4710–4719 (2009)

    Article  Google Scholar 

  22. M.A. Djeziri, R. Merzouki, B. Ould Bouamama, G. Dauphin-Tanguy, Fault detection of backlash phenomenon in mechatronic system with parameter uncertainties using bond graph approach, in Proceedings of IEEE International Conference on Mechatronics and Automation (Luoyang, China, 2006), pp. 600–605

    Google Scholar 

  23. M.A. Djeziri, Diagnostic des Systèmes Incertains par l’Approche Bond Graph. Ph.D. thesis, Ecole Centrale de Lille, France, 2007

    Google Scholar 

  24. M.A. Djeziri, R. Merzouki, B. Ould-Bouamama, G. Dauphin-Tanguy, Robust fault diagnosis using bond graph approach. IEEE/ASME Trans. Mechatron. 12(6), 599–611 (2007)

    Article  Google Scholar 

  25. W. Drozdz, H.B. Pacejka, Development and validation of a bond graph handling model of an automobile. J. Frankl. Inst. 328(5/6), 941–957 (1991)

    Article  Google Scholar 

  26. A. Emami-Naeini, M.M. Akhter, S.M. Rock, Effect of model uncertainty on failure detection: the threshold selector. IEEE Trans. Autom. Control AC 33, 1106–1115 (1988)

    Article  MATH  Google Scholar 

  27. F.W. Fairman, S.S. Mahil, L. Luk, Disturbance decoupled observer design via singular value decomposition. IEEE Trans. Autom. Control AC-29(1), 84–86 (1984)

    Google Scholar 

  28. J. Feenstra, P.J. Mosterman, G. Biswas, P.C. Breedveld, Bond graph modeling procedures for fault detection and isolation of complex flow processes, in International Conference on Bond Graph Modeling and Simulation (ICBGM’01), Simulation Series, vol. 33, No. 1, pp. 77–82, 2001, ISBN 1-56555-103-6

    Google Scholar 

  29. P.J. Feenstra, E.J. Manders, P.J. Mosterman, G. Biswas, R.J. Barnett, Modeling and instrumentation for fault detection and isolation of a cooling system, in Proceedings of IEEE South East Conference, Nashville, TN USA, 2000, pp. 365–372

    Google Scholar 

  30. P. Frank, Enhancement of robustness in observer-based fault detection. Int. J. Control 59, 955–981 (1994)

    Article  MATH  Google Scholar 

  31. P.M. Frank, Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy–a survey and some new results. Automatica 26(3), 459–474 (1990)

    Article  MATH  Google Scholar 

  32. P.M. Frank, X. Ding, Frequency domain approach to optimally robust residual generation and evaluation for model based fault diagnosis. Automatica 30, 789–904 (1994)

    Article  MATH  Google Scholar 

  33. P.M. Frank, X. Ding, Survey of robust residual generation and evaluation methods in observer-based fault detection systems. J. Process Control 7(6), 403–424 (1997)

    Article  Google Scholar 

  34. J. Gertler, Residual generation in model-based fault diagnosis. Control Theory Adv. Technol. 9(1), 259–285 (1993)

    MathSciNet  Google Scholar 

  35. J. Gertler, Fault detection and isolation using parity relations. Control Eng. Pract. 5(5), 653–661 (1997)

    Article  Google Scholar 

  36. J. Gertler, Fault Detection and Diagnosis in Engineering Systems (Marcel Dekker, New York, 1998)

    Google Scholar 

  37. J. Gertler, D. Singer, A new structural framework for parity equation-based failure detection and isolation. Automatica 26(2), 381–388 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  38. S.K. Ghoshal, A.K. Samantaray, Multiple fault disambiguations through parameter estimation: a bond graph model-based approach. Int. J. Intell. Syst. Technol. Appl. 5(1/2), 166–184 (2008)

    Article  Google Scholar 

  39. S.K. Ghoshal, A.K. Samantaray, Wolfgang Borutzky (ed.) Bond graph model-based fault diagnosis, in Bond Graph Modelling of Engineering Systems, ed. by W. Borutzky (Springer, New York, 2011), pp. 227–265

    Google Scholar 

  40. C.A. González, G. Acosta, C. De Prada, Knowledge based process control supervision and diagnosis: the AEROLID approach. Expert Syst. Appl. 14, 371–383 (1998)

    Article  Google Scholar 

  41. C.A. González, B.P. Junquera, G.A. Lazo, C.L. Bello, On-line industrial supervision and diagnosis, knowledge level description and experimental results. Expert Syst. Appl. 20(2), 117–132 (2001)

    Article  Google Scholar 

  42. F. Hamelin, D. Sauter, Robust fault detection in uncertain dynamic systems. Automatica 36(11), 1747–1754 (2000)

    Article  MATH  Google Scholar 

  43. Z. Han, W. Li, S.L. Shah, Fault detection and isolation in the presence of process uncertainties, in 15th IFAC World Congress, Barcelona, 2002, pp. 1887–1892

    Google Scholar 

  44. D.T. Horak, Failure detection in dynamic systems with modelling errors. J. Guid. Control Dyn. 11(6), 508–516 (1998)

    Article  Google Scholar 

  45. D. Hrovat, J. Asgari, M. Fodor, Automotive mechatronic systems, in Mechatronic systems techniques and applications,Transportation and Vehicular Systems, vol. 2 (Gordon and Breach Science Publishers, Amsterdam, 2000), pp. 1–98

    Google Scholar 

  46. K. Hsing-Chia, C. Hui-Kuo, A new symbiotic evolution-based fuzzy-neural approach to fault diagnosis of marine propulsion systems. Eng. Appl. Artif. Intell. 17, 919–930 (2004)

    Article  Google Scholar 

  47. R. Isermann, Process fault detection based on modelling and estimation methods: a survey. Automatica 20, 387–404 (1994)

    Article  Google Scholar 

  48. R. Isermann, Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance (Springer, London, 2005)

    Google Scholar 

  49. R. Isermann, B. Freyermuth, Process fault detection based on process model knowledge. Part I: Principles for fault diagnosis with parameter estimation. ASME Trans. Dyn. Syst. Meas. Control 113, 620–626 (1991)

    Article  MATH  Google Scholar 

  50. R. Isermann, B. Freyermuth, Process fault detection based on process model knowledge. Part II: Case study experiments. ASME Trans. Dyn. Syst. Meas. Control 113, 627–638 (1991)

    Article  MATH  Google Scholar 

  51. M. Ji, Z. Zhang, G. Biswas, N. Sarkar, Hybrid fault adaptive control of a wheeled mobile robot. IEEE/ASME Trans. Mechatron. 8(2), 226–233 (2003)

    Article  Google Scholar 

  52. A. Johansson, M. Bask, T. Norlander, Dynamic threshold generators for robust fault detection in linear systems with parameter uncertainty. Automatica 42, 1095–1106 (2009)

    Article  MathSciNet  Google Scholar 

  53. S. Jung, T.C. Hsia, Explicit lateral force control of an autonomous mobile robot with slip, in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2005), 2005, pp. 388–393

    Google Scholar 

  54. M. Kinnaert, Robust fault detection based on observers for bilinear systems. Automatica 35(11), 1829–1842 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  55. M. Kinnaert, Y. Peng, Residual generator for sensor and actuator fault detection and isolation, a frequency domain approach. Int. J. Control 61(6), 1423–1435 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  56. T. Kohda, K. Inoue, H. Asama, Computer aided failure analysis using system bond graphs, in International Conference on Bond Graph Modeling and Simulation (ICBGM’01), Simulation Series, vol. 33, No. 1, 2001, pp. 71–76. ISBN 1-56555-103-6

    Google Scholar 

  57. T. Kohda, H. Katsubi, H. Fujihara, K. Inoue, Identification of system failure causes using bond graph models. IEEE Trans. Syst. Man Cybern. 5, 269–274 (1993)

    Google Scholar 

  58. J. Korbicz, J.M. Koscielny, Z. Kowalczuk, W. Cholewa, Fault Diagnosis: Models, Artificial Intelligence, Applications (Springer, Berlin, 2004), ISBN 3540407677

    Google Scholar 

  59. W. Lee, C. Park, G. Kelly, Fault detection in an air-handling unit using residual and recursive parameter identification methods. ASHRAE Trans. (Part 1) 102(1), 528–539 (1996)

    Google Scholar 

  60. S.F. Lin, A.P. Wang, Design of observers with unknown inputs using eigenstructure assignment. Int. J. Syst. Sci. 31(6), 705–711 (2000)

    Article  MATH  Google Scholar 

  61. D. Linkens, H. Wang, Qualitative bond graph reasoning in control engineering: fault diagnosis, in International Conference on Bond Graph Modeling and Simulation (ICBGM’95), Simulation Series, vol. 27, 1995, pp. 189–194, ISBN 1-56555-037-4

    Google Scholar 

  62. K. Medjaher, A.K. Samantaray, B. Ould Bouamama, M. Staroswiecki, Supervision of an industrial steam generator. Part II: Online implementation. Control Eng. Pract. 14(1), 85–96 (2005)

    Article  Google Scholar 

  63. R. Merzouki, K. Medjaher, M.A. Djeziri, B. Ould Bouamama, Backlash fault detection in mechatronic system. Mechatronics 17(6), 299–310 (2007)

    Article  Google Scholar 

  64. R.E. Moore, Interval Analysis (Prentice Hall, New Jersey, 1966)

    MATH  Google Scholar 

  65. P.J. Mosterman, G. Biswas, Diagnosis of continuous valued systems in transient operating regions. IEEE Trans. Syst. Man Cybern. 29(6), 554–565 (1999)

    Article  Google Scholar 

  66. A. Mukherjee, R. Karmakar, Modelling and Simulation of Engineering Systems Through Bond Graphs (Alpha Sciences International, Pangbourne, 2000)

    Google Scholar 

  67. A. Mukherjee, R. Karmakar, A.K. Samantaray, Bond Graph in Modeling, Simulation and Fault Identification (CRC Press, Boca Raton, 2006), ISBN: 978-8188237968, 1420058657

    Google Scholar 

  68. B. Ould Bouamama, K. Medjaher, M. Bayart, A.K. Samantaray, B. Conrard, Fault detection and isolation of smart actuators using bond graphs and external models. Control Eng. Pract. 13(2), 159–175 (2005)

    Article  Google Scholar 

  69. B. Ould Bouamama, K. Medjaher, A.K. Samantaray, M. Staroswiecki, Supervision of an industrial steam generator. Part I: Bond graph modelling. Control Eng. Pract. 14(1), 71–83 (2005)

    Article  Google Scholar 

  70. B. Ould Bouamama, A.K. Samantaray, K. Medjaher, M. Staroswiecki, G. Dauphin-Tanguy, Model builder using functional and bond graph tools for FDI design. Control Eng. Pract. 13(7), 875–891 (2005)

    Article  Google Scholar 

  71. B. Ould Bouamama, A. K. Samantaray, M. Staroswiecki, G. Dauphin-Tanguy, Derivation of constraint relations from bond graph models for fault detection and isolation, in International Conference on Bond Graph Modeling and Simulation (ICBGM’03), Simulation Series, vol. 35, No. 2, 2003, pp. 104–109, ISBN 1-56555-257-1

    Google Scholar 

  72. H.B. Pacejka, Modelling complex vehicle systems using bond graphs. J. Frankl. Inst. 319(1/2), 67–81 (1985)

    Article  MATH  Google Scholar 

  73. P.M. Pathak, A.K. Samantaray, R. Merzouki, B. Ould-Bouamama, Reconfiguration of directional handling of an autonomous vehicle, in IEEE Region 10 Colloquium and 3rd International Conference on Industrial and Information Systems, ICIIS 2008, art. no. 4798408, 2008

    Google Scholar 

  74. R.J. Patton, J. Chen, A review of parity space approaches to fault diagnosis, in Proceedings of SAFEPROCESS 91, vol. 1, 1991, pp. 239–255

    Google Scholar 

  75. R.J. Patton, J. Chen, Observer-based fault detection and isolation: robustness and applications. Control Eng. Pract. 5(5), 671–682 (1997)

    Article  Google Scholar 

  76. R.J. Patton, P.M. Frank, R.N. Clark, Fault Diagnosis in Dynamic Systems, Theory and Applications (Prentice-Hall, Englewood Cliff, 1989)

    Google Scholar 

  77. R.J. Patton, P.M. Frank, R.N. Clark, Issues of Fault Diagnosis for Dynamic Systems (Springer, London, 2000)

    Google Scholar 

  78. S. Ploix, M. Desinde, S. Touaf, Automatic design of detection tests in complex dynamic systems, in 16th IFAC World Congress, Prague, Czech Republic, 2005

    Google Scholar 

  79. V. Puig, J. Quevedo, Passive robust fault detection using fuzzy parity equations. Math. Comput. Simul. 60, 193–207 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  80. P. Ralston, G. DePuy, J.H. Graham, Computer-based monitoring and fault diagnosis: a chemical process case study. ISA Trans. 40(1), 85–98 (2001)

    Article  Google Scholar 

  81. F. Rambeaux, F. Hamelin, D. Sauter, Optimal thresholding for robust fault detection of uncertain systems. Int. J. Robust Nonlinear Control 10, 1155–1173 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  82. A.K. Samantaray, S.K. Ghoshal, Sensitivity bond graph approach to multiple fault isolation through parameter estimation. Proc. IMechE Part-I J. Syst. Control Eng. 221(4), 577–587 (2007)

    Article  Google Scholar 

  83. A.K. Samantaray, S.K. Ghoshal, Bicausal bond graphs for supervision: from fault detection and isolation to fault accommodation. J. Frankl. Inst. 345(1), 1–28 (2008)

    Article  MATH  Google Scholar 

  84. A.K. Samantaray, S.K. Ghoshal, S. Chakraborty, Bond graph model based design of supervision algorithm for distributed fault tolerant control systems. Int. J. Autom. Control 1, 28–47 (2007)

    Article  Google Scholar 

  85. A.K. Samantaray, S.K. Ghoshal, S. Chakraborty, A. Mukherjee, Improvements to single-fault isolation using estimated parameters. Simulation 81(12), 827–845 (2005)

    Article  Google Scholar 

  86. A.K. Samantaray, K. Medjaher, B. Ould Bouamama, M. Staroswiecki, G. Dauphin-Tanguy, Component based modelling of thermo-fluid systems for sensor placement and fault detection. Simul. Trans. Soc. Model. Simul. Int. 80(7–8), 381–398 (2004)

    Google Scholar 

  87. A.K. Samantaray, K. Medjaher, B. Ould Bouamama, M. Staroswiecki, G. Dauphin-Tanguy, Diagnostic bond graphs for online fault detection and isolation. Simul. Model. Pract. Theory 14(3), 237–262 (2005)

    Article  Google Scholar 

  88. A.K. Samantaray, B. Ould Bouamama, Model-Based Process Supervision—A Bond Graph Approach (Springer, London, 2008)

    Google Scholar 

  89. A. Sanyal, R. Karmakar, Directional stability of truck-dolly-trailer system. Veh. Syst. Dyn. 24(8), 617–637 (1995)

    Article  Google Scholar 

  90. A. Seidenberg, An elimination theory for differential algebra. Univ. Calif. Publ. Math. 3, 31–65 (1956)

    MathSciNet  Google Scholar 

  91. Z. Shi, F. Gu, B. Lennox, A.D. Ball, The development of an adaptive threshold for model-based fault detection of a nonlinear electro-hydraulic system. Control Eng. Pract. 13, 1357–1367 (2005)

    Article  Google Scholar 

  92. Z. Shiller, Y. Gwo, Dynamic motion planning of autonomous vehicles. IEEE Trans. Robot. Autom. 7(2), 241–248 (1991)

    Article  Google Scholar 

  93. C. Sié Kam, G. Dauphin-Tanguy, Bond graph models of structured parameter uncertainties. J. Frankl. Inst. 342(4), 379–399 (2005)

    Article  MATH  Google Scholar 

  94. R. Siegwart, I.R. Nourbakhsh, Introduction to Autonomous Mobile Robots (The MIT Press, Cambridge, 2004)

    Google Scholar 

  95. S. Simani, C. Fantuzzi, R.J. Patton, Model-Based Fault Diagnosis in Dynamic Systems Using Identification Techniques (Springer, London, 2003)

    Google Scholar 

  96. R. Slier, P.M. Frank, Robust Observer-Based Fault Diagnosis in Non Linear Uncertain Systems. Springer, advances in fault diagnosis for dynamic systems: model based approaches edition, 2000

    Google Scholar 

  97. M. Staroswiecki, Quantitative and qualitative models for fault detection and isolation. Mech. Syst. Signal Process. 14(3), 301–325 (2000)

    Article  Google Scholar 

  98. M. Staroswiecki, G. Comtet-Varga, Analytical redundancy relations for fault detection and isolation in algebraic dynamic systems. Automatica 37, 687–699 (2001)

    MathSciNet  MATH  Google Scholar 

  99. J. Stephan, M. Bodson, J. Chiasson, Real-time estimation of the parameters and fluxes of induction motors. IEEE Trans. Ind. Appl. 30(3), 746–759 (1994)

    Article  Google Scholar 

  100. M. Tagina, J.P. Cassar, G. Dauphin-Tanguy, M. Staroswiecki, Bond graph models for direct generation of formal fault detection systems. Syst. Anal. Model. Simul. 23, 1–17 (1996)

    MATH  Google Scholar 

  101. M. Tagina, J.Ph. Cassar, G. Dauphin-Tanguy, M. Staroswiecki, Localisation de défaillances par l’approche bond-graph. J. Européen des Systèmes Automatisés (JESA) 31, 1489–1508 (1998)

    Google Scholar 

  102. P. Taillibert, Various improvement to diagnosing with temporal bands, in 9th International Workshop on Principles of Diagnosis, DX’98, Massachussets, 1998

    Google Scholar 

  103. P. Taillibert, E. Loiez, Polynomial temporal band sequences for analog diagnosis, in International Joint Conference On Artificial Intelligence, IJCAI’97, Nagoya, Japan, Aug 1997

    Google Scholar 

  104. C. Ündey, E. Tatara, A. Çinar. Real-time batch process supervision by integrated knowledge-based systems and multivariate statistical methods. Eng. Appl. Artif. Intell. 16(5–6), 555–566 (2003)

    Google Scholar 

  105. V. Venkatasubramanian, R. Rengaswamy, K. Yin, S.N. Kavuri, A review of process fault detection and diagnosis. Part I: Quantitative model-based methods. Comput. Chem. Eng. 27, 293–311 (2003)

    Article  Google Scholar 

  106. V. Venkatasubramanian, R. Rengaswamy, K. Yin, S.N. Kavuri, A review of process fault detection and diagnosis. Part II: Qualitative models and search strategies. Comput. Chem. Eng. 27, 313–326 (2003)

    Article  Google Scholar 

  107. V. Venkatasubramanian, R. Rengaswamy, K. Yin, S.N. Kavuri, A review of process fault detection and diagnosis. Part III: Process history based methods. Comput. Chem. Eng. 27, 327–346 (2003)

    Article  Google Scholar 

  108. J.P.M. Vissers, The Control Design for an Overactuated Vehicle. Master’s Thesis, Technische Universiteit Eindhoven, 2005

    Google Scholar 

  109. N. Viswanadham, R. Srichander, Fault detection using unknown-input observers. Control Theory Adv. Technol. 3(2), 91–101 (1987)

    MathSciNet  Google Scholar 

  110. H. Wang, D. Linkens, Intelligent supervisory control, a qualitative bond graph reasoning approach, in World Scientific Series in Robotics and Intelligent Systems, vol. 14 (World Scientific, Sinagapore, 1996)

    Google Scholar 

  111. H.B. Wang, J.L. Wang, J. Lam, Robust fault detection observer design: iterative LMI approaches. J. Dyn. Syst. Meas. Control 129, 77–82 (2007)

    Article  Google Scholar 

  112. R. Wang, Statistical Theory (Xian Jiaotong University Press, Xian, 2003)

    Google Scholar 

  113. R.V. Welch, J.R. Dixon, Guiding conceptual design through behavioral reasoning. Res. Eng. Des. 6, 169–188 (1994)

    Article  Google Scholar 

  114. A.S. Willsky, A survey of design methods for failure detection systems. Automatica 12, 601–611 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  115. X.G. Yan, C. Edwards, Nonlinear robust fault recognition and estimation using a sliding mode observe. Automatica 43, 1605–1614 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  116. P. Young, Parameter estimation for continuous time models—a survey. Automatica 17(1), 23–39 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  117. A. Zaidi, N. Zanzouri, M. Tagina, Graphical approaches for modelling and diagnosis of hybrid dynamic systems. WSEAS Trans. Syst. 5(10), 2322–2327 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rochdi Merzouki .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Merzouki, R., Samantaray, A.K., Pathak, P.M., Ould Bouamama, B. (2013). Model-Based Fault Diagnosis and Fault Tolerant Control. In: Intelligent Mechatronic Systems. Springer, London. https://doi.org/10.1007/978-1-4471-4628-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4628-5_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4627-8

  • Online ISBN: 978-1-4471-4628-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics