Advertisement

Abstract

After the liberation the process of normalization set in, including the purification of all institutions. Here Brouwer was punished for his independent position in wartime; he was in fact suspended for a couple of months, which he considered a gross insult. Moreover, his colleagues used the occasion to take over the power in the faculty. Although Brouwer fiercely opposed the new policies of the faculty and the department, his influence was limited. He was even sidetracked in the running of his own journal, Compositio; he used to speak of “the theft of my journal”. The days of his domination were over. A most welcome balm for his wounded feelings was a standing invitation to lecture on intuitionism in Cambridge. He also returned to his research. This time he published a number of papers on extensions of his previous intuitionistic œvre, and a few substantial expositions of his philosophical and foundational views. A planned monograph based on his Cambridge lectures appeared only posthumously.

Keywords

Editorial Board Mathematical Institute City Council Mathematical Activity Oral Communication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alberts, G.: Jaren van berekening. Toepassingsgerichte initiatieven in de Nederlandse wiskundebeoefening 1945–1960. Amsterdam University Press, Amsterdam (1998) Google Scholar
  2. Alberts, G., van der Blij, F., Nuis, J.: Zij mogen uiteraard daarbij de zuivere wiskunde niet verwaarloozen. CWI, Amsterdam (1987) zbMATHGoogle Scholar
  3. Brouwer, L.E.J.: Essentieel negatieve eigenschappen. Indag. Math. 10, 322–323 (1948a). Transl. “Essentially negative properties” in CW 1, p. 478 Google Scholar
  4. Brouwer, L.E.J.: De non-aequivalentie van de constructieve en negatieve orderelatie in het continuum. Indag. Math. 11, 37–39 (1949a). Transl. “The non-equivalence of the constructive and the negative order relation in the continuum” in CW 1, pp. 495–496 Google Scholar
  5. Brouwer, L.E.J.: Contradictoriteit der elementaire meetkunde. Indag. Math. 11, 89–90 (1949b). Transl. “Contradictority of elementary geometry” in CW 1, pp. 497–498 Google Scholar
  6. Brouwer, L.E.J.: Consciousness, philosophy and mathematics. In: Proceedings of the 10th International Congress of Philosophy, Amsterdam, 1948, vol. 3, pp. 1235–1249 (1949c) Google Scholar
  7. Brouwer, L.E.J.: Brouwer’s Cambridge Lectures on Intuitionism. van Dalen, D. (ed.). Cambridge University Press, Cambridge (1981) zbMATHGoogle Scholar
  8. Bruins, E.M.: ANAΓKH. Tekst van het College van den 15-den October 1982, terafsluiting van regulier onderwijs aan de Universiteit gegeven door Evert Marie Bruins. Ex Malis Bona (1982) Google Scholar
  9. Heyting, A.: Intuitionism, an Introduction. North-Holland, Amsterdam (1956) zbMATHGoogle Scholar
  10. Knegtmans, P.J.: Een kwetsbaar centrum van de geest. Amsterdam University Press, Amsterdam (1998) CrossRefGoogle Scholar
  11. Kreisel, G.: Gödel’s excursion into intuitionistic logic. In: Weingartner, P., Schmetterer, L. (eds.) Gödel Remembered, pp. 67–186. Bibliopolis, Napoli (1987) Google Scholar
  12. Kreisel, G., Newman, M.H.A.: Luitzen Egbertus Jan Brouwer 1881–1966. Elected For. Mem R.S. 1948. Biogr. Mem. Fellows R. Soc. 15, 38–68 (1969) CrossRefGoogle Scholar
  13. Maas, A.J.P.: Atomisme en individualisme. Ph.D. thesis, University of Amsterdam (2001) Google Scholar
  14. Mannoury, G.: La question vitale “A ou B”. Nieuw Arch. Wiskd. 821, 161–167 (1943) Google Scholar
  15. Mannoury, G.: De wetenschap van de mens. Ned. Tijdschr. Psychol. Haar Grensgeb. 6, 208–211 (1951). Dedicated to Brouwer at his seventieth birthday. “Opgedragen aan Prof. Dr. L.E.J. Brouwer, ter gelegenheid van zijn zeventigste verjaardag, als erkentenis van het vele, dat hij tot de gedachterijping zijner tijdgenoten heeft bijgedragen” Google Scholar
  16. Myhill, J.: Notes towards an axiomatization of intuitionistic analysis. Log. Anal. 9, 280–297 (1966) MathSciNetzbMATHGoogle Scholar
  17. Romein-Verschoor, A.: Omzien in verwondering. Arbeiderspers, Amsterdam (1970). 2 vols. Google Scholar
  18. Soifer, A.: In search for van der Waerden, Leipzig and Amsterdam, 1931–1945. Part I: Leipzig. Geombinatorics 14, 21–40 (2005a) MathSciNetGoogle Scholar
  19. Soifer, A.: In search for van der Waerden, Leipzig and Amsterdam, 1931–1945. Part II: Amsterdam. Geombinatorics 14, 72–102 (2005b) Google Scholar
  20. Soifer, A.: In search for van der Waerden, Leipzig and Amsterdam, 1931–1945. Part III: Amsterdam. Geombinatorics 14, 124–161 (2005c) MathSciNetzbMATHGoogle Scholar
  21. van Dalen, D.: Hermann Weyl’s intuitionistic mathematics. Bull. Symb. Log. 1, 145–169 (1995) zbMATHCrossRefGoogle Scholar
  22. Weyl, H.: Über die neue Grundlagenkrise der Mathematik. Math. Z. 10, 39–79 (1921) MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Dirk van Dalen
    • 1
  1. 1.Department of PhilosophyUtrecht UniversityUtrechtNetherlands

Personalised recommendations