In this chapter we find a complete return to topology, to be precise, to dimension theory. In 1923 Brouwer attended the Marburg meeting of the German Math Society, at that same meeting there was a young Russian topologist, Urysohn, who had given a definition of dimension unaware of the fact that Brouwer had already done so. When his attention was called to this fact he checked Brouwer’s 1913 paper and found a mistake. He informed Brouwer and the latter immediately set out to check his old paper. Indeed there was a erroneous detail in the definition. The two corresponded about the matter and eventually agreed that Brouwer’s mistake was a slip of the pen (born out by solid evidence). Almost at the same time Menger had studied the topic and given his own definition of dimension. In 1924 Urysohn and Alexandrov visited Germany, went on to see Brouwer and then went on to France. Urysohn died when swimming in rough weather at the coast of Brittany. Alexandrov and Brouwer were inconsolable, they decided to edit Urysohn’s scientific estate.


Editorial Board Winning Strategy Dimension Theory Proof Reading Dimension Paper 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aczel, P.: An introduction to inductive definitions. In: Barwise, J. (ed.) The Handbook of Mathematical Logic, pp. 739–782. North-Holland, Amsterdam (1977) CrossRefGoogle Scholar
  2. Alexandroff, P., Urysohn, P.: Mémoire sur les espaces topologiques compacts. Verh. K. Akad. Wet. Afd. Natuurkd., Eerste Sect. 14, 1–96 (1929) Google Scholar
  3. Alexandrov, P.S.: Pages from an autobiography. Russ. Math. Surv. 34, 267–302 (1979) CrossRefGoogle Scholar
  4. Alexandrov, P.S.: Pages from an autobiography. Russ. Math. Surv. 35, 315–358 (1980) CrossRefGoogle Scholar
  5. Brouwer, L.E.J.: Beweis des Jordanschen Kurvensatzes. Math. Ann. 69, 169–175 (1910a). Corr. in Brouwer (1910i, 1919o) MathSciNetzbMATHCrossRefGoogle Scholar
  6. Brouwer, L.E.J.: Beweis der Invarianz des n-dimensionalen Gebiets. Math. Ann. 71, 305–313 (1911d) MathSciNetCrossRefGoogle Scholar
  7. Brouwer, L.E.J.: Über den natürlichen Dimensionsbegriff. J. Reine Angew. Math. 142, 146–152 (1913a). Corr. in Brouwer (1924h) zbMATHGoogle Scholar
  8. Brouwer, L.E.J.: Begründung der Funktionenlehre unabhängig vom logischen Satz vom ausgeschlossenen Dritten. Erster Teil, Stetigkeit, Messbarkeit, Derivierbarkeit. Verh. K. Akad. Wet. Amst. 2, 1–24 (1923a) Google Scholar
  9. Brouwer, L.E.J.: Über den natürlichen Dimensionsbegriff. K. Ned. Akad. Wet. Proc. Sect. Sci. 26, 795–800 (1923e) Google Scholar
  10. Brouwer, L.E.J.: Bemerkungen zum natürlichen Dimensionsbegriff. K. Ned. Akad. Wet. Proc. Sect. Sci. 27, 635–638 (1924e) Google Scholar
  11. Brouwer, L.E.J.: Zum natürlichen Dimensionsbegriff. Math. Z. 21, 312–314 (1924g) MathSciNetzbMATHCrossRefGoogle Scholar
  12. Brouwer, L.E.J.: Berichtigung. J. Reine Angew. Math. 153, 253 (1924h). Re Brouwer (1913a) zbMATHGoogle Scholar
  13. Brouwer, L.E.J.: Zuschrift an dem Herausgeber. Jahresber. Dtsch. Math.-Ver. 33, 124 (1925c) zbMATHGoogle Scholar
  14. Brouwer, L.E.J.: Zur Geschichtsschreibung der Dimensionstheorie. K. Ned. Akad. Wet. Proc. Sect. Sci. 31, 953–957 (1928f). Corr. in KNAW Proc. 32, p. 1022 zbMATHGoogle Scholar
  15. Brouwer, L.E.J.: Collected Works 2. Geometry, Analysis Topology and Mechanics. Freudenthal, H. (ed.). North-Holland, Amsterdam (1976) Google Scholar
  16. Hurewicz, W., Wallman, H.: Dimension Theory. Princeton University Press, Princeton (1948) zbMATHGoogle Scholar
  17. Johnson, D.M.: The problem of the invariance of dimension in the growth of modern topology, part I. Arch. Hist. Exact Sci. 20, 97–188 (1979) MathSciNetzbMATHCrossRefGoogle Scholar
  18. Johnson, D.M.: The problem of the invariance of dimension in the growth of modern topology, part II. Arch. Hist. Exact Sci. 25, 85–267 (1981) MathSciNetzbMATHCrossRefGoogle Scholar
  19. Jordan, C.: Cours d’Analyse de l’École Polytechnique I. Gauthiers-Villars, Paris (1893) zbMATHGoogle Scholar
  20. Lennes, N.J.: Curves in non-metrical analysis situs with an application in the calculus of variations. Am. J. Math. 33, 287–326 (1911) MathSciNetzbMATHCrossRefGoogle Scholar
  21. Mayrhofer, K.: Hans Hahn. Monatshefte Math. Phys. 41, 221–238 (1934) MathSciNetzbMATHCrossRefGoogle Scholar
  22. Menger, K.: Über die Dimensionalität von Punktmengen. I. Monatshefte Math. Phys. 33, 148–160 (1923) MathSciNetzbMATHCrossRefGoogle Scholar
  23. Menger, K.: Zur Dimensions- und Kurventheorie. Monatshefte Math. Phys. 36, 411–432 (1929) MathSciNetzbMATHCrossRefGoogle Scholar
  24. Menger, K.: Selected Papers in Logic and Foundations, Didactics, Economics. Reidel, Dordrecht (1979) zbMATHCrossRefGoogle Scholar
  25. Poincaré, H.: Sur un théorème de géométrie. Rend. Circ. Mat. Palermo 33, 375–407 (1912) CrossRefGoogle Scholar
  26. Riesz, F.: Die Genesis des Raumbegriffs. Gesammelte Arb. 1, 67–161 (1960). Original in Hungarian, 1906 Google Scholar
  27. Urysohn, P.: Les multiplicités Cantoriennes. C. R. Math. Acad. Sci. Paris 175, 440–442 (1922) zbMATHGoogle Scholar
  28. Urysohn, P.: Sur une fonction analytique partout continue. Fundam. Math. 4, 144–150 (1923) zbMATHGoogle Scholar
  29. Urysohn, P.: Works on Topology and Other Areas of Mathematics 1, 2. Alexandrov, P. (ed.). State Publ. of Technical and Theoretical Literature, Moscow (1951) (Russian) Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Dirk van Dalen
    • 1
  1. 1.Department of PhilosophyUtrecht UniversityUtrechtNetherlands

Personalised recommendations