Skip to main content

Probability Inequalities

  • Chapter
  • 2212 Accesses

Part of the book series: Communications and Control Engineering ((CCE))

Abstract

This chapter addresses the issue of finite sample size in probability estimation, that is, the so-called sample complexity. The main objective in this context is to analyze rigorously the reliability of the probabilistic estimates introduced in Chap. 7, for a finite sample size. This issue is crucial in the development of randomized algorithms for uncertain systems and control, and makes a clear distinction from the asymptotic methods which are instead based on the laws of large numbers. Specifically, the chapter includes Markov, Chebychev and Hoeffding inequalities. The additive and multiplicative Chernoff bounds are subsequently derived and the sample complexity for estimation of extrema is also studied.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alamo T, Tempo R, Luque A (2010) On the sample complexity of probabilistic analysis and design methods. In: Hara S, Ohta Y, Willems JC (eds) Perspectives in mathematical system theory, control, and signal processing. Springer, Berlin, pp 39–50

    Chapter  Google Scholar 

  2. Bai E-W, Tempo R, Fu M (1998) Worst-case properties of the uniform distribution and randomized algorithms for robustness analysis. Math Control Signals Syst 11:183–196

    Article  MathSciNet  MATH  Google Scholar 

  3. Bennett G (1962) Probability inequalities for the sum of independent random variables. J Am Stat Assoc 57:33–45

    Article  MATH  Google Scholar 

  4. Bernoulli J (1713) Ars conjectandi, Paris

    Google Scholar 

  5. Bernstein SN (1946) The theory of probabilities. Gostehizdat Publishing House, Moscow (in Russian)

    Google Scholar 

  6. Bertsimas D, Sethuraman J (2000) Moment problems and semidefinite optimization. In: Wolkowicz H, Saigal R, Vandenberghe L (eds) Handbook of semidefinite programming. Kluwer Academic Publishers, Boston, pp 469–509

    Chapter  Google Scholar 

  7. Boucheron S, Lugosi G, Massart P (2003) Concentration inequalities using the entropy method. Ann Probab 31:1583–1614

    Article  MathSciNet  MATH  Google Scholar 

  8. Chebychev P (1874) Sur les valeurs limites des intégrales. J Math Pures Appl 19:157–160

    Google Scholar 

  9. Chen X, Zhou K (1998) Order statistics and probabilistic robust control. Syst Control Lett 35

    Google Scholar 

  10. Chernoff H (1952) A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann Math Stat 23:493–507

    Article  MathSciNet  MATH  Google Scholar 

  11. Conover WJ (1980) Practical nonparametric statistics. Wiley, New York

    Google Scholar 

  12. Dabbene F, Shcherbakov PS, Polyak BT (2010) A randomized cutting plane method with probabilistic geometric convergence. SIAM J Optim 20:3185–3207

    Article  MathSciNet  MATH  Google Scholar 

  13. Dembo A, Zeitouni O (1993) Large deviations techniques and applications. Jones and Bartlett, Boston

    MATH  Google Scholar 

  14. Efron B, Stein C (1981) The jackknife estimate of variance. Ann Stat 9:586–596

    Article  MathSciNet  MATH  Google Scholar 

  15. Hoeffding W (1963) Probability inequalities for sums of bounded random variables. J Am Stat Assoc 58:13–30

    Article  MathSciNet  MATH  Google Scholar 

  16. Khargonekar P, Tikku A (1996) Randomized algorithms for robust control analysis and synthesis have polynomial complexity. In: Proceedings of the IEEE conference on decision and control

    Google Scholar 

  17. Markov A (1884) On certain applications of algebraic continued fractions. PhD Dissertation, St. Petersburg (in Russian)

    Google Scholar 

  18. Marshall A, Olkin I (1960) Multivariate Chebyshev inequalities. Ann Math Stat 31:1001–1014

    Article  MathSciNet  MATH  Google Scholar 

  19. Papoulis A, Pillai SU (2002) Probability, random variables and stochastic processes. McGraw-Hill, New York

    Google Scholar 

  20. Popescu I (1999) Applications of optimization in probability, finance and revenue management. PhD dissertation, Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  21. Ray LR, Stengel RF (1993) A Monte Carlo approach to the analysis of control system robustness. Automatica 29:229–236

    Article  MathSciNet  MATH  Google Scholar 

  22. Stieltjes TJ (1894) Recherches sur les fractions continues. Ann Fac Sci Toulouse 8:1–122

    Article  MathSciNet  Google Scholar 

  23. Stieltjes TJ (1895) Recherches sur les fractions continues. Ann Fac Sci Toulouse 9:5–47

    Article  MathSciNet  Google Scholar 

  24. Talagrand M (1996) New concentration inequalities in product spaces. Invent Math 126:505–563

    Article  MathSciNet  MATH  Google Scholar 

  25. Tempo R, Bai E-W, Dabbene F (1997) Probabilistic robustness analysis: explicit bounds for the minimum number of samples. Syst Control Lett 30:237–242

    Article  MathSciNet  MATH  Google Scholar 

  26. Tong YL (1980) Probability inequalities in multivariate distributions. Academic Press, New York

    MATH  Google Scholar 

  27. Uspensky JV (1937) Introduction to mathematical probability. McGraw-Hill, New York

    MATH  Google Scholar 

  28. Vidyasagar M (2002) Learning and generalization: with applications to neural networks, 2nd edn. Springer, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Tempo, R., Calafiore, G., Dabbene, F. (2013). Probability Inequalities. In: Randomized Algorithms for Analysis and Control of Uncertain Systems. Communications and Control Engineering. Springer, London. https://doi.org/10.1007/978-1-4471-4610-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4610-0_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4609-4

  • Online ISBN: 978-1-4471-4610-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics