Skip to main content

Abstract

In this chapter we address the issue of generating random samples of real and complex vector vectors in p  norm balls, according to the uniform distribution. We present efficient algorithms based upon the theoretical developments of the Chap. 15. The presented methods are non-asymptotic, and therefore, they can be easily implemented on parallel and distributed architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here, p k (z) denotes a polynomial of degree k obtained at the kth step of the recursion.

References

  1. Beadle ER, Djurić PM (1997) Uniform random parameter generation of stable minimum-phase real ARMA (p,q) processes. IEEE Signal Process Lett 4(9):259–261

    Article  Google Scholar 

  2. Calafiore G, Dabbene F, Tempo R (1999) Radial and uniform distributions in vector and matrix spaces for probabilistic robustness. In: Miller DE, Qiu L (eds) Topics in control and its applications. Springer, New York, pp 17–31

    Chapter  Google Scholar 

  3. Durbin J (1960) The fitting of time series models. Revue Inst Int Stat 28:233–243

    Article  MATH  Google Scholar 

  4. Fam A, Meditch J (1978) A canonical parameter space for linear systems design. IEEE Trans Autom Control 23(3):454–458

    Article  MathSciNet  MATH  Google Scholar 

  5. Fujimoto RM (2000) Parallel and distributed simulation systems. Wiley Interscience, New York

    Google Scholar 

  6. Gantmacher FR (1959) The theory of matrices. American Mathematical Society, Providence

    MATH  Google Scholar 

  7. Hicks JS, Wheeling RF (1959) An efficient method for generating uniformly distributed points on the surface of an n-dimensional sphere. Commun ACM 2:17–19

    Article  MATH  Google Scholar 

  8. Levinson N (1947) The Wiener RMS error criterion in filter design and prediction. J Math Phys 25:261–278

    MathSciNet  Google Scholar 

  9. Liu W, Chen J (2010) Probabilistic estimates for mixed model validation problems with \(\mathcal{H}_{\infty}\) type uncertainties. IEEE Trans Autom Control 55(6):1488–1494

    Article  Google Scholar 

  10. Liu W, Chen J, El-Sherief H (2007) Probabilistic bounds for uncertainty model validation. Automatica 43(6):1064–1071

    Article  MathSciNet  MATH  Google Scholar 

  11. Ma W, Sznaier M, Lagoa CM (2007) A risk adjusted approach to robust simultaneous fault detection and isolation. Automatica 43(3):499–504

    Article  MathSciNet  MATH  Google Scholar 

  12. Muller ME (1959) A note on a method for generating random points uniformly distributed on n-dimensional spheres. Commun ACM 2:19–20

    Article  MATH  Google Scholar 

  13. Nemirovski A, Polyak BT (1994) Necessary conditions for the stability of polynomials and their use. Autom Remote Control 55(11):1644–1649

    Google Scholar 

  14. Nurges Ü (2006) Robust pole assignment via reflection coefficients of polynomials. Automatica 42:1223–1230

    Article  MathSciNet  MATH  Google Scholar 

  15. Nurges Ü (2009) Reflection coefficients of polynomials and stable polytopes. IEEE Trans Autom Control 54(6):1314–1318

    Article  MathSciNet  Google Scholar 

  16. Shcherbakov PS, Dabbene F (2011) On the generation of random stable polynomials. Eur J Control 17(2):145–161

    Article  MathSciNet  MATH  Google Scholar 

  17. Sznaier M, Lagoa CM, Mazzaro MC (2005) An algorithm for sampling subsets of \(\mathcal{H}_{\infty}\) with applications to risk-adjusted performance analysis and model (in)validation. IEEE Trans Autom Control 50(3):410–416

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Tempo, R., Calafiore, G., Dabbene, F. (2013). Vector Randomization Methods. In: Randomized Algorithms for Analysis and Control of Uncertain Systems. Communications and Control Engineering. Springer, London. https://doi.org/10.1007/978-1-4471-4610-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4610-0_16

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4609-4

  • Online ISBN: 978-1-4471-4610-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics