Advertisement

Numerical Computation Studies Between a New Algorithm, Power, and QR Iterative Algorithms for Solution of Eigenvalue of Essentially Positive Matrices

  • Tedja Santanoe Oepomo
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 185)

Abstract

The aim of this manuscript is to study and to compare several iterative procedures based on Oepomo, Power, and QR methods for solving dominant eigenvalues of essentially positive matrices. Ascending and descending techniques lead to a new iterative method, new algorithm. The new technique was compared to the Power and QR methods in term of speed of convergence, number of required mathematical operations, and effectiveness to numerically calculate dominant eigenvalues of essentially positive matrices. Numerical examples illustrate the purpose.

Keywords

Collatz’s theorem Perron-Frobernius’ theorem Eigenvalue 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carnahan B, Luther HA, Wilkes JO (1969) Applied numerical methods. John Wiley, New YorkGoogle Scholar
  2. 2.
    Collatz L (1942-43) Einschliessungssatz fuer die charakteristischen Zahlen von Matrizen. Math. Zeits. 48:221–226Google Scholar
  3. 3.
    Elsner L (1972) Verfahren zur berechnung des spektralradius nichtnegativer irreducibler Matrizen II. Computing 9:69–73Google Scholar
  4. 4.
    Faddeev DK, Faddeeva VN (1973) Computational methods of linear algebra. Zapiski Nauchnykh Seminarov POMI 54:3–228Google Scholar
  5. 5.
    Francis JGF (1961) The QR transformation. The Computer Journal 4:265-271Google Scholar
  6. 6.
    Froberg CE, Frhoberg CE (1969) Introduction to numerical analysis, Addison-Wesley, MassachusettsGoogle Scholar
  7. 7.
    Givens W (1958) Computation of plane unitary rotations transforming a general matrix to triangular form. Journal of the Society for Industrial and Applied Mathematics 9:26–50Google Scholar
  8. 8.
    Mathews JH, Fink KK (2004) Numerical methods using Matlab. 4th Edn, Prentice-Hall, Upper Saddle River, New JerseyGoogle Scholar
  9. 9.
    Oepomo TS (2003) A contribution to Collatz’s eigenvalue inclusion theorem for nonnegative irreducible matrices. Electronic Journal of Linear Algebra 10:31–45Google Scholar
  10. 10.
    Oepomo TS (2011) Oepomo’s algorithm for computing largest real part eigenvalues of essentially positive matrices: Collatz & Perron-Frobernius approach. Acta Mathematica Scientia 31:1189–1202Google Scholar
  11. 11.
    Ruhe A (1966) Eigenvalue of a complex matrix by the QR method. BIT 6:350–358Google Scholar
  12. 12.
    Varga RS (1962) Matrix iterative analysis. Prentice-Hall, Englewood CliffsGoogle Scholar
  13. 13.
    Watkins D (1982) Understanding the QR algorithm. SIAM Review 24:427–440Google Scholar
  14. 14.
    Wilkinson JH (1965) The algebraic eigenvalue problem. Claredon Press, OxfordGoogle Scholar
  15. 15.
    Wilkinson JH (1966) Convergence of LR, QR and related algorithms. The Computer Journal 8:77–84Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Science, Technology, Engineering, and Mathematics Division West LA/LA Harbor CollegesSchool of Business California International UniversityLa HabraUSA

Personalised recommendations