A Hybrid Implementation of Genetic Algorithm for Path Planning of Mobile Robots on FPGA

Conference paper


This paper proposes a hybrid design and implementation of Genetic Algorithm (GA) for the path planning of mobile robots on a Field Programmable Gate Array (FPGA). GAs have been widely used to generate an optimal path by taking the advantage of its strong optimization ability; however, GA’s computation time may be longer for complex problems. Especially, calculation of the fitness function takes a long time. A solution to accelerate it is to implement the GA in hardware. Intellectual Property (IP) hard core provides faster computation. In this study, fitness function of the GA is implemented on IP hard core while the other operators of GA run on a Microblaze soft processor. The experimental results showed that the fitness module by IP hard core can run 98.95 times faster than the fitness module by the Microblaze soft processor. The overall performance of the GA is accelerated 37.5 % by hybrid implementation with both hard and soft cores. We used the Pioneer P3-DX Mobile Robot and Xilinx XUPV5-LX110T FPGA device.


Genetic algorithms FPGA IP core Microblaze Path planning 


  1. 1.
    Hu, Y., Yang, S.X.: A knowledge based genetic algorithm for path planning of a mobile robot. In: Proceedings of the 2004 IEEE International Conference on Robotics and Automation, vol. 5, pp. 4350–4355 (2004)Google Scholar
  2. 2.
    Tu, J., Yang, S.X.: Genetic algorithm based path planning for a mobile robot. Robotics and automation. In: Proceedings ICRA ’03 IEEE International Conference on Robotics and Automation, vol. 1, pp. 1221–1226 (2003)Google Scholar
  3. 3.
    Al-Taharwa, I., Sheta, A., Al-Weshah, M.: A mobile robot path planning using genetic algorithm in static environment. J. Comput. Sci. 4, 341–344 (2008)CrossRefGoogle Scholar
  4. 4.
    Elshamli, A., Abdullah, H.A., Areibi, S.: Genetic algorithm for dynamic path planning. In: Canadian Conference on Electrical and Computer Engineering, vol. 2, pp. 677–680 (2004)Google Scholar
  5. 5.
    Mostafa, H.E., Khadragi, A.I., Hanafi, Y.Y.: Hardware implementation of genetic algorithm on FPGA. In: 21th National Radio Science Conference, pp. 1–9 (2004)Google Scholar
  6. 6.
    Scott, S.D., Samal, A., Seth, S.: HGA: a hardware-based genetic algorithm. In: Proceedings of the Third International ACM Symposium on Field-Programmable Gate Arrays (FPGA’95), pp. 53–59 (1995)Google Scholar
  7. 7.
    Wang, J., Loo, S.M.: Case study of finite resource optimization in FPGA using genetic algorithm. Int. J. Comput. Appl. 17(2), 95–101 (2010)Google Scholar
  8. 8.
    Chang, H.J., Lee, C.S.G., Lu, Y., Hu, Y.C.: P-SLAM: simultaneous localization and mapping with environmental-structure prediction. IEEE Trans. Robot. 23(2), 281–293 (2007)CrossRefGoogle Scholar
  9. 9.
    Teimoori, H., Savkin, A.V.: Equiangular navigation and guidance of a wheeled mobile robot based on range-only measurements. Robot. Auton. Syst. 58(2), 203–215 (2010)CrossRefGoogle Scholar
  10. 10.
    Tuncer, A., Yildirim, M., Erkan, K.: A motion planning system for mobile robots. Adv. Electr. Comput. Eng. 12(1), 57–62 (2012)CrossRefGoogle Scholar
  11. 11.
    Manikas, T.W., Ashenayi, K., Wainwright, R.L.: Genetic algorithms for autonomous robot navigation. IEEE Instrum. Meas. Mag. 10(6), 26–31 (2007)CrossRefGoogle Scholar
  12. 12.
    Tuncer, A., Yildirim, M.: Chromosome coding methods in genetic algorithm for path planning of mobile robots. In: 26th International Symposium of Computer and Information Sciences (ISCIS 2011), pp. 377–383 (2011)Google Scholar
  13. 13.
    Li, Q., Zhang, W., Yin, Y., Wang, Z., Liu, G.: An improved genetic algorithm of optimum path planning for mobile robots. In: Sixth International Conference on Intelligent Systems Design and Applications, ISDA ’06, vol. 2, pp. 637–642 (2006)Google Scholar
  14. 14.
    Gelenbe, E., Liu, P., Lainé, J.: Genetic algorithms for route discovery. IEEE Trans. Syst. Man Cybern. Part B Cybern. 36(6), 1247–1254 (2006)CrossRefGoogle Scholar
  15. 15.
    Sugihara, K., Smith, J.: Genetic algorithms for adaptive motion planning of an autonomous mobil robot. In: Proceedings, IEEE International Symposium on Computational Intelligence in Robotics and Automation, CIRA’97, pp. 138–143 (1997)Google Scholar
  16. 16.
    Allaire, F.C.J., Tarbouchi, M., Labonté, G., Fusina, G.: FPGA implementation of genetic algorithm for UAV real-time path planning. J. Intell. Robot. Syst. 54, 495–510 (2009)CrossRefGoogle Scholar
  17. 17.
    Lysecky, R., Vahid, F.: A study of the speedups and competitiveness of FPGA soft processor cores using dynamic hardware/software partitioning. In: Proceedings of the Design, Automation and Test in Europe, vol. 1, pp. 18–23 (2005)Google Scholar
  18. 18.
    XILINX Inc.: MicroBlaze processor reference guide. (2010). Accessed 16 Feb 2010
  19. 19.
    Gomez-Pulido, J.A., Vega-Rodriguez, M.A., Sanchez-Perez, J.M., Priem-Mendes, S., Carreira, V.: Accelerating floating-point fitness functions in evolutionary algorithms a FPGA-CPU-GPU performance comparison. Genet. Program. Evolvable Mach. 12(4), 403–427 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Networked Control Systems LaboratoryKocaeli UniversityKocaeliTurkey

Personalised recommendations