Integrating Semantic Tagging with Popularity-Based Page Rank for Next Page Prediction

Conference paper


In this work, we present a next page prediction method that is based on semantic classification of Web pages supported with Popularity based Page Rank (PPR) technique. As the first step, we use a model that basically uses Web page URLs in order to classify Web pages semantically. By using this semantic information, next page is predicted according to the semantic similarity of Web pages. At this point, we augment the technique with Popularity based Page Rank (PPR) values of each Web page. PPR is a type of Page Rank algorithm that is biased with page visit duration, frequency of page visits and the size of the Web page. The accuracy of the proposed method is tested with a set of experiments in comparison to that of two similar approaches in the literature.


Next page prediction Recommendation Web usage mining Page Rank algorithm Semantic tagging Semantic similarity 


  1. 1.
    Deshpande, M., Karypis, G.: Selective markov models for predicting web page accesses. ACM Trans. Internet Technol. 4, 163–184 (2004). 10.1145/990301.990304 Google Scholar
  2. 2.
    Duhan, N., Sharma, A., Bhatia, K.: Page ranking algorithms: a survey. In: Advance Computing Conference, 2009. IACC 2009. IEEE International, pp. 1530–1537 (2009)Google Scholar
  3. 3.
    Eirinaki, M., Vazirgiannis, M.: Usage-based pagerank for web personalization. In: Fifth IEEE International Conference on Data Mining, p. 8, November 2005Google Scholar
  4. 4.
    Gunel, B.D., Senkul, P.: Investigating the effect of duration page size and frequency on next page recommendation with page rank algorithm. In: Proceedings of the Fifth ACM Web Search and Data Mining Conference. ACM (2012)Google Scholar
  5. 5.
    Guo, Y.Z., Ramamohanarao, K., Park, L.: Personalized pagerank for web page prediction based on access time-length and frequency. In: IEEE/WIC/ACM International Conference on Web Intelligence, pp. 687–690, November 2007Google Scholar
  6. 6.
    Haveliwala, T.: Topic-sensitive pagerank: a context-sensitive ranking algorithm for web search. IEEE Trans. Knowl. Data Eng. 15(4), 784–796 (2003)Google Scholar
  7. 7.
    Liu, H., Keselj, V.: Combined mining of web server logs and web contents for classifying user navigation patterns and predicting users’ future requests. Data Knowl. Eng. 61, 304–330 (2007)CrossRefGoogle Scholar
  8. 8.
    Liu, H.: Towards semantic data mining. In: 9th International Semantic Web Conference (ISWC2010), November 2010.
  9. 9.
    Mobasher, B., Dai, H., Luo, T., Sun, Y., Zhu, J.: Integrating web usage and content mining for more effective personalization. In: Bauknecht, K., Madria, S., Pernul, G. (eds.) Electronic Commerce and Web Technologies, Lecture Notes in Computer Science, vol. 1875, pp. 165–176. Springer, Berlin (2000)Google Scholar
  10. 10.
    Oberle, D., Bettina, B.B., Hotho, A., Gonzalez, J.: Conceptual user tracking. In: Menasalvas, E., Segovia, J., Szczepaniak, P. (eds.) Advances in Web Intelligence, Lecture Notes in Computer Science, vol. 2663, pp. 955–955. Springer, Berlin (2003)Google Scholar
  11. 11.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: bringing order to the web. Technical Report 1999–66, Stanford InfoLab (November 1999), previous number = SIDL-WP-1999-0120Google Scholar
  12. 12.
    Paulakis, S., Lampos, C., Eirinaki, M., Vazirgiannis, M.: Sewep: a web mining system supporting semantic personalization. In: Boulicaut, J.F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) Knowledge Discovery in Databases: PKDD 2004, Lecture Notes in Computer Science, vol. 3202, pp. 552–554. Springer, Berlin (2004)Google Scholar
  13. 13.
    Qi, X., Davison, B.D.: Web page classification: features and algorithms. ACM Comput. Surv. 41, 12:1–12:31 (2009).  10.1145/1459352.1459357

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.METU Computer Engineering DepartmentAnkaraTurkey

Personalised recommendations