Cooperating Stochastic Automata: Approximate Lumping an Reversed Process

  • S. Balsamo
  • G. Dei Rossi
  • A. Marin
Conference paper


The paper aims at defining a novel procedure for approximating the steady-state distribution of cooperating stochastic models using a component-wise lumping. Differently from previous approaches, we consider also the possibility of lumping the reversed processes of the cooperating components and show the benefits of this approach in a case study.


  1. 1.
    Balsamo, S., Dei Rossi, G., Marin, A.: Lumping and reversed processes in cooperating automata. In: Proceedings of International Conference on Analytical and Stochastic Modeling Techniques and Applications (ASMTA), Lecture Notes in Computer Science 7314, pp. 212–226. Springer, Grenoble (2012)Google Scholar
  2. 2.
    Buchholz, P.: Product form approximations for communicating Markov processes. Perf. Eval. 67(9), 797–815 (2010), Special Issue: QEST 2008Google Scholar
  3. 3.
    Fourneau, J.M., Plateau, B., Stewart, W.J.: Product form for stochastic automata networks. In: Proceedings of ValueTools ’07. pp. 1–10. ICST, Brussels (2007)Google Scholar
  4. 4.
    Gilmore, S., Hillston, J., Ribaudo, M.: An efficient algorithm for aggregating PEPA models. IEEE Trans. Softw. Eng. 27(5), 449–464 (2001)Google Scholar
  5. 5.
    Hillston, J.: A compositional approach to performance modelling. Ph.D. thesis, Department of Computer Science, University of Edinburgh (1994)Google Scholar
  6. 6.
    Jacobi, M.N.: A robust spectral method for finding lumpings and meta stable states of non-reversible Markov chains. Elect. Trans. Num. An. 37, 296–306 (2010)Google Scholar
  7. 7.
    Kelly, F.: Reversibility and Stochastic Networks. Wiley, New York (1979)Google Scholar
  8. 8.
    Kemeny, J.G., Snell, J.L.: Finite Markov Chains, Chap. II. D. Van Nostrand Company, inc. (1960)Google Scholar
  9. 9.
    Lafon, S., Lee, A.: Diffusion maps and coarse-graining: a unified framework for dimensionality reduction, graph partitioning, and data set parametrization. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1393–1403 (2006)Google Scholar
  10. 10.
    Miner, A.S., Ciardo, G., Donatelli, S.: Using the exact state space of a markov model to compute approximate stationary measures. In: Proceedings of ACM SIGMETRIC, pp. 207–216. ACM, New York (2000)Google Scholar
  11. 11.
    Stewart, W.J.: Probability, Markov Chains, Queues, and Simulation. Princeton University Press, Princeton (2009)Google Scholar
  12. 12.
    Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Trans. Neural Netw. 16(3), 645–678 (2005)Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.DAISUniversità Ca’ Foscari di VeneziaVeneziaItaly

Personalised recommendations