Skip to main content

Part of the book series: Springer Series in Reliability Engineering ((RELIABILITY))

Abstract

Let X be a random variable (rv) obeying a cumulative distribution function (cdf).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McGrath, E.J., Irving, D.C. (1975). Techniques for Efficient Monte Carlo Simulation (Vol. II, ORNL-RSIC-38).

    Google Scholar 

  2. Niederreiter, H. (1992). Random Number Generation and Quasi-Monte Carlo Methods, SIAM.

    Google Scholar 

  3. Sobol, I. M. (1967). The distribution of points in a cube and the approximate evaluation of integrals. USSR Computational Mathematics and Mathematical Physics, 7(4), 86–112.

    Article  MathSciNet  Google Scholar 

  4. Matsumoto, M., & Nishimura, T. (1998). Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation, 8(1), 3–30.

    Article  MATH  Google Scholar 

  5. Rubinstein, R. Y. (1981). Simulation and the Monte Carlo method. NY: Wiley.

    Book  MATH  Google Scholar 

  6. Kalos, M. H., & Whitlock, P. A. (2008). Monte Carlo methods. NY: Wiley.

    Book  MATH  Google Scholar 

  7. Fang, K. T., Hickernell, F. J., & Niederreiter, H. (2002). Monte Carlo and Quasi-Monte Carlo methods 2000. Berlin: Springer.

    Book  MATH  Google Scholar 

  8. Niederreiter, H., & Spanier, J. (1998). Monte Carlo and Quasi-Monte Carlo methods. Berlin: Springer.

    Book  Google Scholar 

  9. Liu, J. S. (2001). Monte Carlo strategies in scientific computing., Springer Series in Statistics Berlin: Springer.

    MATH  Google Scholar 

  10. L’Ecuyer, P. (1994). Uniform random number generation. Annals of Operational Research, 53, 77–120.

    Article  MathSciNet  MATH  Google Scholar 

  11. L’Ecuyer, P. (2011). Uniform random number generators. In: M. Lovric (Ed.), International Encyclopedia of Statistical Science Part 21(pp. 1625–1630). Berlin: Springer.

    Google Scholar 

  12. Shortle, J. F., & L’Ecuyer, P. (2011). Introduction to rare-event simulation. In Wiley Encyclopedia of Operations Research and Management Science. New York: Wiley.

    Google Scholar 

  13. L’Ecuyer, P. (2011). Random number generators. In S. I. Gass & M. C. Fu (Eds.), Wiley encyclopedia of operations research and management science (3rd ed.). Berlin: Springer.

    Google Scholar 

  14. L’Ecuyer, P., Mandjes, M., Turn, B. (2009). Importance sampling and rare event simulation. In G. Rubino, B. Turn (eds.), Rare event simulation using Monte Carlo methods (pp. 17–38). New York: Wiley.

    Google Scholar 

  15. L’Ecuyer, P., (2010). Pseudorandom number generators. In R. Cont, (Ed.), Wiley encyclopedia of quantitative finance (pp. 1431–1437). New York: Wiley.

    Google Scholar 

  16. L’Ecuyer, P. (2004). Random number generation and Quasi-Monte Carlo. In J. Teugels, B. Sundt (Eds.), Wiley encyclopedia of actuarial science (Vol. 3, pp. 1363–1369). New York: Wiley.

    Google Scholar 

  17. Marsaglia G., Bray, T.A. (1964). A convenient method for generating normal variables. SIAM Review, 6(3).

    Google Scholar 

  18. Booth, T. E. (1989). Zero-variance solutions for linear Monte Carlo. Nuclear Science and Engineering, 102, 332–340.

    Google Scholar 

  19. Hall, M. C. G. (1982). Cross-section adjustment with Monte Carlo sensitivities. Application to the Winfrith Iron Benchmark, Nuclear Science and Engineering, 81, 423–431.

    Google Scholar 

  20. Rief, H. (1984). Generalized Monte Carlo Perturbation algorithms for correlated sampling and a second-order series approach. Annals of Nuclear Energy, 11, 455–476.

    Article  Google Scholar 

  21. Rief, H. (1987). Monte Carlo uncertainly analysis. In Y. Ronen (Ed.), CRC handbook on uncertainty analysis. Boca Raton: CRC press.

    Google Scholar 

  22. Rief, H. (1996). Stochastic perturbation analysis applied to neutral particle transfer. Advances in Nuclear Science and Technology, 23, 69–97.

    Article  Google Scholar 

  23. Lux, I., & Koblinger, L. (1991). Monte Carlo particle transport methods: Neutron and photon calculations. Boca Raton: CRC Press.

    Google Scholar 

  24. Amster, H. J., & Djamehri, M. J. (1976). Prediction of statistical error in Monte Carlo transport calculations. Nuclear Science and Engineering, 60, 131–142.

    Google Scholar 

  25. Booth, T. E., & Amster, H. J. (1978). Prediction of Monte Carlo errors by a theory generalized to treat track-length estimators. Nuclear Science and Engineering, 65, 273–285.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Zio .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Zio, E. (2013). Monte Carlo Simulation: The Method. In: The Monte Carlo Simulation Method for System Reliability and Risk Analysis. Springer Series in Reliability Engineering. Springer, London. https://doi.org/10.1007/978-1-4471-4588-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4588-2_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4587-5

  • Online ISBN: 978-1-4471-4588-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics