Advertisement

Georeferencing in Social Networks

  • Pascal Kelm
  • Vanessa Murdock
  • Sebastian Schmiedeke
  • Steven Schockaert
  • Pavel Serdyukov
  • Olivier van Laere
Chapter
Part of the Computer Communications and Networks book series (CCN)

Abstract

Mobile devices are increasingly the primary way people access information on the Web. More and more users are carrying small computing devices with them wherever they go and can access the Internet regardless of their location. Whereas prior to the wide adoption of mobile devices, a user’s online life and offline life were partitioned by time and location, now there is less of a division. Users can carry their online friends with them and maintain a constant contact in the form of status updates and uploaded pictures and video, in a running social commentary that blurs the distinction between online and offline interactions. This has lead to a proliferation of data that connects a user’s online social network with their offline activities. As a result, the data they create provides a solid link between users, what they are doing offline, and what they are contributing online. The question is how to harness this content.

Keywords

Query Image Media Item Twitter Data Landmark Recognition Scene Match 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Adamic, L.A., Baeza-Yates, R.A., Counts, S. (eds.): In: Proceedings of the Fifth International Conference on Weblogs and Social Media, Barcelona, July 17–21, 2011. AAAI, Menlo Park (2011)Google Scholar
  2. 2.
    Agarwal, S., Snavely, N., Simon, I., Seitz, S., Szeliski, R.: Building rome in a day. In: Proceedings of the 2009 IEEE 12th International Conference on Computer Vision, pp. 72–79, 29–Oct 2 2009. IEEE, Piscataway (2009)Google Scholar
  3. 3.
    Amitay, E., Har’El, N., Sivan, R., Soffer, A.: Web-a-where: geotagging web content. In: Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 273–280. ACM, New York (2004)Google Scholar
  4. 4.
    Backstrom, L., Sun, E., Marlow, C.: Find me if you can: improving geographical prediction with social and spatial proximity. In: Proceedings of the 19th International Conference on World Wide Web, pp. 61–70. ACM, New York (2010)Google Scholar
  5. 5.
    Bay, H., Tuytelaars, T., Van Gool, L.: Surf: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) Computer Vision - ECCV 2006. Lecture Notes in Computer Science, vol. 3951, pp. 404–417. Springer, Berlin/Heidelberg (2006) 10.1007/1174402332Google Scholar
  6. 6.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)MATHGoogle Scholar
  7. 7.
    Chang, J., Sun, E.: Location3: how users share and respond to location-based data on social. In: Adamic, L.A., Baeza-Yates, R.A., Counts, S. (eds.) Proceedings of the Fifth International Conference on Weblogs and Social Media, Barcelona, July 17–21, 2011. AAAI, Menlo Park (2011)Google Scholar
  8. 8.
    Cheng, Z., Caverlee, J., Lee, K.: You are where you tweet: a content-based approach to geo-locating Twitter users. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, pp. 759–768. ACM, New York (2010)Google Scholar
  9. 9.
    Clements, M., Serdyukov, P., de Vries, A.P., Reinders, M.J.: Using flickr geotags to predict user travel behaviour. In: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’10, pp. 851–852. ACM, New York (2010)Google Scholar
  10. 10.
    Commission Internationale de L’Eclairage (CIE): Colorimetry. CIE Publication, vol. 15.2, 2nd edn. Central Bureau of the CIE, Vienna (1986). ISBN 3-900-734-00-3Google Scholar
  11. 11.
    Crandall, D.J., Backstrom, L., Huttenlocher, D., Kleinberg, J.: Mapping the world’s photos. In: Proceedings of the 18th International Conference on World Wide Web, Madrid, pp. 761–770. ACM, New York (2009)Google Scholar
  12. 12.
    Crandall, D.J., Backstrom, L., Cosley, D., Suri, S., Huttenlocher, D., Kleinberg, J.: Inferring social ties from geographic coincidences. Proc. Natl. Acad. Sci. U.S.A. 107(52), 22436–22441 (2010)CrossRefGoogle Scholar
  13. 13.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 886–893. IEEE, Los Alamitos (2005)Google Scholar
  14. 14.
    De Choudhury, M., Feldman, M., Amer-Yahia, S., Golbandi, N., Lempel, R., Yu, C.: Automatic construction of travel itineraries using social breadcrumbs. In: Proceedings of the 21st ACM Conference on Hypertext and Hypermedia, HT ’10, pp. 35–44. ACM, New York (2010)Google Scholar
  15. 15.
    De Rouck, C., Van Laere, O., Schockaert, S., Dhoedt, B.: Georeferencing Wikipedia pages using language models from Flickr. In: Proceedings of the Terra Cognita 2011 Workshop, Bonn, pp. 3–10 (2011)Google Scholar
  16. 16.
    Eisenstein, J., O’Connor, B., Smith, N.A., Xing, E.P.: A latent variable model for geographic lexical variation. In: Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, Cambridge, pp. 1277–1287 (2010)Google Scholar
  17. 17.
    Fink, C., Piatko, C., Mayfield, J., Chou, D., Finin, T., Martineau, J.: The geolocation of web logs from textual clues. In: Proceedings of the 2009 International Conference on Computational Science and Engineering, pp. 1088–1092. IEEE, Los Alamitos (2009)Google Scholar
  18. 18.
    Fontugne, R., Cho, K., Won, Y., Fukuda, K.: Disasters seen through flickr cameras. In: Proceedings of the Special Workshop on Internet and Disasters, SWID ’11, p. 5:1–5:10. ACM, New York (2011)Google Scholar
  19. 19.
    Friedland, G., Sommer, R.: Cybercasing the joint: on the privacy implications of geo-tagging. In: USENIX Workshop on Hot Topics in Security, Washington, DC (2010)Google Scholar
  20. 20.
    Gallagher, A., Joshi, D., Yu, J., Luo, J.: Geo-location inference from image content and user tags. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2009, pp. 55–62. IEEE, Piscataway (2009)Google Scholar
  21. 21.
    Gammeter, S., Bossard, L., Quack, T., Gool, L.V.: I know what you did last summer: object-level auto-annotation of holiday snaps. In: Proceedings of the IEEE 12th International Conference on Computer Vision, pp. 614–621, 29–Oct 2 2009. IEEE, Piscataway (2009)Google Scholar
  22. 22.
    Gomide, J., Veloso, A., Meira, W., Jr., Almeida, V., Benevenuto, F., Ferraz, F., Teixeira, M.: Dengue surveillance based on a computational model of spatio-temporal locality of twitter. In: Proceedings of the ACM SIGWEB Web Science Conference (WebSci), Koblenz (2011)Google Scholar
  23. 23.
    Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. SIGMOD Rec. 29, 1–12 (2000)CrossRefGoogle Scholar
  24. 24.
    Hauff, C., Houben, G.-J.: WISTUD at MediaEval 2011: Placing task. In: Proceedings of the Working Notes of the MediaEval Workshop, Pisa (2011)Google Scholar
  25. 25.
    Hays, J., Efros, A.: IM2GPS: estimating geographic information from a single image. In: Proceedings of the Computer Vision and Pattern Recognitio, Anchorage, pp. 1–8 (2008)Google Scholar
  26. 26.
    Hollenstein, L.: Capturing vernacular geography from georeferenced tags. Master’s thesis, University of Zurich (2008)Google Scholar
  27. 27.
    Ivanov, I., Vajda, P., Lee, J.-S., Goldmann, L., Ebrahimi, T.: Geotag propagation in social networks based on user trust model. Multimed. Tools Appl. 56, 155–177 (2012). doi:10.1007/s11042-010-0570-7CrossRefGoogle Scholar
  28. 28.
    Julesz, B.: Textons, the elements of texture perception, and their interactions. Nature 290, 3 (1981)CrossRefGoogle Scholar
  29. 29.
    Kalogerakis, E., Vesselova, O., Hays, J., Efros, A., Hertzmann, A.: Image sequence geolocation with human travel priors. In: Proceedings of the 2009 IEEE 12th International Conference on Computer Vision, pp. 253–260, 29–Oct 2 2009. IEEE, Piscataway (2009)Google Scholar
  30. 30.
    Kelm, P., Schmiedeke, S., Sikora, T.: A hierarchical, multi-modal approach for placing videos on the map using millions of flickr photographs. In: Proceedings of the 2011 ACM workshop on Social and Behavioural Networked Media Access, SBNMA ’11, pp. 15–20. ACM, New York (2011)Google Scholar
  31. 31.
    Kelm, P., Schmiedeke, S., Sikora, T.: Multi-modal, multi-resource methods for placing flickr videos on the map. In: Proceedings of the 1st ACM International Conference on Multimedia Retrieval, ICMR ’11, pp. 52:1–52:8. ACM, New York (2011)Google Scholar
  32. 32.
    Kinsella, S., Murdock, V., O’Hare, N.: “I’m eating a sandwich in Glasgow”: modeling locations with tweets. In: Proceedings of the 3rd International Workshop on Search and Mining User-Generated Contents, pp. 61–68 (2011)Google Scholar
  33. 33.
    Knopp, J., Sivic, J., Pajdla, T.: Avoiding confusing features in place recognition. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) Computer Vision at ECCV 2010. Lecture Notes in Computer Science, vol. 6311, pp. 748–761. Springer, Berlin/Heidelberg (2010)CrossRefGoogle Scholar
  34. 34.
    Kurashima, T., Iwata, T., Irie, G., Fujimura, K.: Travel route recommendation using geotags in photo sharing sites. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, CIKM ’10, pp. 579–588. ACM, New York (2010)Google Scholar
  35. 35.
    Li, Y., Crandall, D., Huttenlocher, D.: Landmark classification in large-scale image collections. In: Proceedings of the 2009 IEEE 12th International Conference on Computer Vision, pp. 1957–1964, 29–Oct 2 2009. IEEE, Piscataway (2009)Google Scholar
  36. 36.
    Lieberman, M.D., Samet, H., Sankaranayananan, J.: Geotagging: using proximity, sibling, and prominence clues to understand comma groups. In: Proceedings of the 6th Workshop on Geographic Information Retrieval, pp. 6:1–6:8. ACM, New York (2010)Google Scholar
  37. 37.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004). doi:10.1023/B:VISI.0000029664.99615.94CrossRefGoogle Scholar
  38. 38.
    Lu, X., Wang, C., Yang, J.-M., Pang, Y., Zhang, L.: Photo2trip: generating travel routes from geo-tagged photos for trip planning. In: Proceedings of the International Conference on multimedia, MM ’10, pp. 143–152. ACM, New York (2010)Google Scholar
  39. 39.
    Lux, M., Chatzichristofis, S.A.: LIRe: Lucene image retrieval – an extensible java CBIR library. In: Proceedings of the 16th ACM International Conference on Multimedia, pp. 1085–1088. ACM, New York (2008)Google Scholar
  40. 40.
    Malik, J., Belongie, S., Shi, J., Leung, T.: Textons, contours and regions: cue integration in image segmentation. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 918–925. IEEE, Los Alamitos (1999)Google Scholar
  41. 41.
    McCurley, K.S.: Geospatial mapping and navigation of the web. In: Proceedings of the 10th International Conference on World Wide Web, pp. 221–229. ACM, New York (2001)Google Scholar
  42. 42.
    Mendoza, M., Poblete, B., Castillo, C.: Twitter under crisis: can we trust what we rt? In: Proceedings of the Workshop on Social Media Analytics (KDD). ACM, New York (2010)Google Scholar
  43. 43.
    O’Hare, N., Murdock, V.: Modeling locations with social media. J. Inf. Retr. (2012, In press)Google Scholar
  44. 44.
    Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42, 145–175 (2001)MATHCrossRefGoogle Scholar
  45. 45.
    Quack, T., Leibe, B., Van Gool, L.: World-scale mining of objects and events from community photo collections. In: Proceedings of the 2008 International Conference on Content-Based Image and Video Retrieval, CIVR ’08, pp. 47–56. ACM, New York (2008)Google Scholar
  46. 46.
    Rattenbury, T., Naaman, M.: Methods for extracting place semantics from flickr tags. ACM Trans. Web 3, 1:1–1:30 (2009)Google Scholar
  47. 47.
    Sadilek, A., Kautz, H., Bigham, J.P. Finding your friends and following them to where you are. In: Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, WSDM ’12, pp. 723–732. ACM, New York (2012)Google Scholar
  48. 48.
    Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes twitter users: real-time event detection by social sensors. In: Proceedings of the 19th International Conference on World Wide Web, WWW ’10, pp. 851–860. ACM, New York (2010)Google Scholar
  49. 49.
    Scellato, S., Noulas, A., Mascolo, C.: Exploiting place features in link prediction on location-based social networks. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data mining, KDD ’11, pp. 1046–1054. ACM, New York (2011)Google Scholar
  50. 50.
    Schockaert, S.: Vague regions in geographic information retrieval. SIGSPATIAL Spec. 3, 24–28 (2011)CrossRefGoogle Scholar
  51. 51.
    Schockaert, S., De Cock, M.: Neighborhood restrictions in geographic ir. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 167–174. ACM, New York (2007)Google Scholar
  52. 52.
    Serdyukov, P., Murdock, V., van Zwol, R.: Placing flickr photos on a map. In: Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 484–491. ACM, New York (2009)Google Scholar
  53. 53.
    Shi, Y., Serdyukov, P., Hanjalic, A., Larson, M.: Personalized landmark recommendation based on geotags from photo sharing sites. In: Adamic, L.A., Baeza-Yates, R.A., Counts, S. (eds.) Proceedings of the Fifth International Conference on Weblogs and Social Media, Barcelona, July 17–21, 2011. AAAI, Menlo Park (2011)Google Scholar
  54. 54.
    Shrivastava, A., Malisiewicz, T., Gupta, A., Efros, A.A.: Data-driven visual similarity for cross-domain image matching. ACM Trans. Graph. 30(6), 154:1–154:10 (2011)Google Scholar
  55. 55.
    Sizov, S.: Geofolk: latent spatial semantics in web 2.0 social media. In: Proceedings of the 3rd ACM International Conference on Web Search and Data Mining, pp. 281–290. ACM, New York (2010)Google Scholar
  56. 56.
    Torralba, A., Fergus, R., Freeman, W.: 80 million tiny images: a large data set for nonparametric object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 30(11), 1958–1970 (2008)CrossRefGoogle Scholar
  57. 57.
    Twaroch, F.A., Jones, C.B., Abdelmoty, A.I.: Acquisition of a vernacular gazetteer from web sources. In: Proceedings of the 1st International Workshop on Location and the Web, pp. 61–64. ACM, New York (2008)Google Scholar
  58. 58.
    Van Laere, O., Schockaert, S., Dhoedt, B.: Finding locations of flickr resources using language models and similarity search. In: Proceedings of the 1st ACM International Conference on Multimedia Retrieval, pp. 48:1–48:8. ACM, New York (2011)Google Scholar
  59. 59.
    Wing, B.P., Baldridge, J.: Simple supervised document geolocation with geodesic grids. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pp. 955–964 (2011)Google Scholar
  60. 60.
    Yin, Z., Cao, L., Han, J., Zhai, C., Huang, T.: Geographical topic discovery and comparison. In: Proceedings of the 20th International Conference on World Wide Web, Portland, pp. 247–256 (2011)Google Scholar
  61. 61.
    Yu, F.X., Ji, R., Chang, S.-F.: Active query sensing for mobile location search. In: Proceedings of the 19th ACM International Conference on Multimedia, MM ’11, pp. 3–12. ACM, New York (2011)Google Scholar
  62. 62.
    Zhang, W., Kosecka, J.: Image based localization in urban environments. In: Proceedings of the Third International Symposium on 3D Data Processing, Visualization, and Transmission, pp. 33–40. IEEE, Los Alamitos (2006)Google Scholar
  63. 63.
    Zhuang, J., Mei, T., Hoi, S.C., Hua, X.-S., Li, S.: Modeling social strength in social media community via kernel-based learning. In: Proceedings of the 19th ACM International Conference on Multimedia, MM ’11, pp. 113–122. ACM, New York (2011)Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Pascal Kelm
    • 1
  • Vanessa Murdock
    • 2
  • Sebastian Schmiedeke
    • 1
  • Steven Schockaert
    • 3
  • Pavel Serdyukov
    • 4
  • Olivier van Laere
    • 5
  1. 1.Technische UniversitätBerlinGermany
  2. 2.Yahoo! ResearchBarcelonaSpain
  3. 3.Cardiff UniversityCardiffUK
  4. 4.YandexMoscowRussia
  5. 5.Universiteit GentGentBelgium

Personalised recommendations