Survey on Social Community Detection

  • Michel Plantié
  • Michel Crampes
Part of the Computer Communications and Networks book series (CCN)


Community detection is a growing field of interest in the area of social network applications. Many community detection methods and surveys have been introduced in recent years, with each such method being classified according to its algorithm type. This chapter presents an original survey on this topic, featuring a new approach based on both semantics and type of output. Semantics opens up new perspectives and allows interpreting high-order social relations. A special focus is also given to community evaluation since this step becomes important in social data mining.


Bipartite Graph Community Detection Epistemic Community Community Detection Algorithm Community Detection Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ahn, Y., Bagrow, J., Lehmann, S.: Communities and hierarchical organization of links in complex networks. Eprint Phys. 1, 1–8 (2009)Google Scholar
  2. 2.
    Andrew, A.M.: Information Theory, Inference, and Learning Algorithms, by David J. C. MacKay, Cambridge University Press, Cambridge (2003), hardback, pp. xii + 628, ISBN 0-521-64298-1 (30.00), vol. 22. Cambridge University Press, Cambridge (2004)Google Scholar
  3. 3.
    Bagrow, J.P.: Evaluating local community methods in networks. J. Stat. Mech. Theory Exp. 2008(05), 8 (2007)Google Scholar
  4. 4.
    Berge, C.: Hypergraphes, Combinatoires des Ensembles Finis. Gauthier-Villars, Paris (1987)zbMATHGoogle Scholar
  5. 5.
    Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008(10), P10008 (2008)CrossRefGoogle Scholar
  6. 6.
    Borgatti, S.P., Everett, M.G., Shirey, P.R.: LS sets, lambda sets and other cohesive subsets. Soc. Netw. 12(4), 337–357 (1990)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Brandes, U., Gaertler, M., Wagner, D.: Experiments on graph clustering algorithms. In: Proceedings of 11th European Symposium on Algorithms (ESA ’03), Budapest, pp. 568–579 (2003)Google Scholar
  8. 8.
    Brandes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer, M., Nikoloski, Z., Wagner, D.: On modularity clustering. IEEE Trans. Knowl. Data Eng. 20(2), 172–188 (2008)CrossRefGoogle Scholar
  9. 9.
    Capocci, A., Servedio, V.D.P., Caldarelli, G., Colaiori, F.: Detecting communities in large networks. Phys. A Stat. Mech. Appl. 352, 669–676 (2005)CrossRefGoogle Scholar
  10. 10.
    Clauset, A.: Finding local community structure in networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 72(2 Pt 2), 7 (2005)Google Scholar
  11. 11.
    Clauset, A., Newman, M., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70(6), 1–6 (2004)CrossRefGoogle Scholar
  12. 12.
    Crampes, M., Plantié, M., Julien, B.: Cliques maximales d’un graphe et treillis de Galois. In: MARAMI Conférence sur les Modèles et l’Analyse des Réseaux: Approches Mathématiques et Informatique, Grenoble (2011)Google Scholar
  13. 13.
    Danon, L., Duch, J., Diaz-Guilera, A., Arenas, A.: Comparing community structure identification. J. Stat. Mech. Theory Exp. 2005(09), 10 (2005)CrossRefGoogle Scholar
  14. 14.
    David, H., Yehuda, K.: On clustering using random walks. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) FSTTCS 2001, LNCS 2245, pp. 18–41. Springer, Berlin/Heidelberg (2001)Google Scholar
  15. 15.
    Derényi, I., Palla, G., Vicsek, T.: Clique percolation in random networks. Phys. Rev. Lett. 94(16), 160202 (2005)CrossRefGoogle Scholar
  16. 16.
    Evans, T.S., Lambiotte, R.: Line graphs, link partitions and overlapping communities. Phys. Rev. E 80(1), 9 (2009)Google Scholar
  17. 17.
    Falzon, L.: Determining groups from the clique structure in large social networks. Soc. Netw. 22(2), 159–172 (2000)CrossRefGoogle Scholar
  18. 18.
    Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 103 (2009)MathSciNetGoogle Scholar
  19. 19.
    Freeman, L.C., White, D.R.: Using galois lattices to represent network data. Sociol. Methodol. 23, 127–146 (1993)CrossRefGoogle Scholar
  20. 20.
    Ganter, B., Wille, R.: Formal Concept Analysis: Foundations and Applications. Springer, Berlin (1999)Google Scholar
  21. 21.
    Girvan, M., Newman, M.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99(12), 7821–7826 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Gregory, S.: A fast algorithm to find overlapping communities in networks. Mach. Learn. Knowl. Discov. Databases 5211, 408–423 (2008)CrossRefGoogle Scholar
  23. 23.
    Gregory, S.: Finding overlapping communities in networks by label propagation. New J. Phys. 12(10), 103018 (2009)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Guimerà, R., Danon, L., Díaz-Guilera, A., Giralt, F., Arenas, A.: Self-similar community structure in a network of human interactions. Phys. Rev. E 68(6), 1–4 (2003)CrossRefGoogle Scholar
  25. 25.
    Guimerà, R., Sales-Pardo, M., Amaral, L.: Module identification in bipartite and directed networks. Phys. Rev. E 76(3), 036102 (2007)CrossRefGoogle Scholar
  26. 26.
    Gulbahce, N., Lehmann, S.: The art of community detection. BioEssays News Rev. Mol. Cell. Dev. Biol. 30(10), 934–938 (2008)CrossRefGoogle Scholar
  27. 27.
    Hughes, D.: Random walks and random environments. Volume 1: random walks. Bull. Math. Biol. 58(3), 598–599 (1996)Google Scholar
  28. 28.
    Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3), 264–323 (1999)CrossRefGoogle Scholar
  29. 29.
    Jay, N., Kohler, F., Napoli, A.: Analysis of Social Communities with Iceberg and Stability-Based Concept Lattices, pp. 258–272. Springer, Berlin/New York (2008)Google Scholar
  30. 30.
    Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell. Sys. Tech. J. 49(2), 291–308 (1970)zbMATHGoogle Scholar
  31. 31.
    Kleinberg, J.: An impossibility theorem for clustering. In: Obermayer, K., Becker, S., Thrun, S. (eds.) Advances in Neural Information Processing Systems 15s. MIT, Cambridge (2002)Google Scholar
  32. 32.
    Kuznetsov, S.O.: On stability of a formal concept. Ann. Math. Artif. Intell. 49(1–4), 101–115 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Lancichinetti, A., Fortunato, S., Kertész, J.: Detecting the overlapping and hierarchical community structure in complex networks. New J. Phys. 11(3), 033015 (2009)CrossRefGoogle Scholar
  34. 34.
    Lin, Y.-R., Sun, J., Castro, P., Konuru, R., Sundaram, H., Kelliher, A.: MetaFac: community discovery via relational hypergraph factorization. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’09, pp. 527–536. ACM, New York (2009)Google Scholar
  35. 35.
    Luccio, F., Sami, M.: On the decomposition of networks in minimally interconnected subnetworks. IEEE Trans. Circuit Theory 16, 184–188 (1969)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Luce, R.D.: Connectivity and generalized cliques in sociometric group structure. Psychometrika 15(2), 169–190 (1950)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Luce, R.D., Perry, A.D.: A method of matrix analysis of group structure. Psychometrika 14(1), 95–116 (1949)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E., Dawson, S.M.: The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations. Behav. Ecol. Sociobiol. 54(4), 396–405 (2003)CrossRefGoogle Scholar
  39. 39.
    MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Cam, L.M.L., Neyman, L. (eds.) Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297. University of California Press, Berkeley (1967)Google Scholar
  40. 40.
    Miyagawa, H.: Community extraction in hypergraphs based on adjacent numbers. Oper. Res. 50, 309–316 (2010)Google Scholar
  41. 41.
    Murata, T.: Detecting communities from tripartite networks. WWW ’10. ACM, New York (2010)Google Scholar
  42. 42.
    Murata, T.: Modularity for heterogeneous networks. In: Proceedings of the 21st ACM Conference on Hypertext and Hypermedia – HT ’10, pp. 129. ACM, New York (2010)Google Scholar
  43. 43.
    Newman, M.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. USA 98(2), 7 (2000)Google Scholar
  44. 44.
    Newman, M.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69(6), 066133 (2004)CrossRefGoogle Scholar
  45. 45.
    Newman, M.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 74(3 Pt 2), 036104 (2006)CrossRefGoogle Scholar
  46. 46.
    Newman, M., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)CrossRefGoogle Scholar
  47. 47.
    Newman, M., Park, J.: Why social networks are different from other types of networks. Phys. Rev E Stat. Nonlinear Soft Matter Phys. 68(3 Pt 2), 036122 (2003)CrossRefGoogle Scholar
  48. 48.
    Nicolas, N., Klaus, O.: Towards community detection in k-partite k-uniform hypergraphs. In: Proceedings NIPS 2009….Google Scholar
  49. 49.
    Nicosia, V., Mangioni, G., Carchiolo, V., Malgeri, M.: Extending the definition of modularity to directed graphs with overlapping communities. J. Stat. Mech. Theory Exp. 2009(03), P03024 (2009)CrossRefGoogle Scholar
  50. 50.
    Noack, A., Rotta, R.: Multi-level algorithms for modularity clustering, p. 12 (2008)Google Scholar
  51. 51.
    Nordhausen, K.: The elements of statistical learning: data mining, inference, and prediction, second edition by Trevor Hastie, Robert Tibshirani, Jerome Friedman. Int. Stat. Rev. 77(3), 482–482 (2009)CrossRefGoogle Scholar
  52. 52.
    Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043), 814–8 (2005)CrossRefGoogle Scholar
  53. 53.
    Papadopoulos, S., Kompatsiaris, Y., Vakali, A., Spyridonos, P.: Community detection in social media. Data Min. Knowl. Discov. (June), 1–40 (2011)Google Scholar
  54. 54.
    Plantié, M., Crampes, M.: From photo networks to social networks, creation and use of a social network derived with photos. In: Proceedings of the ACM International Conference on Multimedia, Firenze, October 2010Google Scholar
  55. 55.
    Pons, P.: Détection de communautés dans les grands graphes de terrain. Ph.D. thesis, Paris 7 (2007)Google Scholar
  56. 56.
    Porter, M.A., Onnela, J.P., Mucha, P.J.: Communities in networks. Not. Am. Math. Soc. 56, 1082–1097 (2009)MathSciNetzbMATHGoogle Scholar
  57. 57.
    Pothen, A., Simon, H.D., Liou, K.-P.: Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11(3), 430 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Qian, R., Zhang, W., Yang, B.: Community detection in scale-free networks based on hypergraph model. In: Proceedings of the 2007 Pacific Asia Conference on Intelligence and Security Informatics, PAISI’07, pp. 226–231. Springer, Berlin/Heidelberg (2007)Google Scholar
  59. 59.
    Roth, C.: Compact, evolving community taxonomies using concept lattices. In: Hitzler, P., Schaerfe, H., Ohrstrom, P. (eds.) Contributions to 14th International Conference on Conceptual Structures, pp. 172–187. Aalborg University Press, Aalborg (2006)Google Scholar
  60. 60.
    Roth, C., Bourgine, P.: Binding social and cultural networks: a model. Networks nlin.AO(February), 8 (2003)Google Scholar
  61. 61.
    Roth, C., Bourgine, P.: Epistemic communities: description and hierarchic categorization. Math. Popul. Stud. Int. J. Math Demogr. 12(2), 107–130 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Roth, C., Bourgine, P.: Lattice-based dynamic and overlapping taxonomies: the case of epistemic communities. Scientometrics 69(2), 429–447 (2006)CrossRefGoogle Scholar
  63. 63.
    Roth, C., Obiedkoy, S., Kourie, D.G.: On succinct representation of knowledge community taxonomies with formal concept analysis. Int. J. Found. Comput. Sci. 19(2), 383 (2008)zbMATHCrossRefGoogle Scholar
  64. 64.
    Schaeffer, S.: Graph clustering. Comput. Sci. Rev. 1(1), 27–64 (2007)MathSciNetCrossRefGoogle Scholar
  65. 65.
    Seidman, S.B., Foster, B.L.: A graph-theoretic generalization of the clique concept. J. Math. Sociol. 6(1), 139–154 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    Selvakkumaran, N., Karypis, G.: Multiobjective hypergraph-partitioning algorithms for cut and maximum subdomain-degree minimization. Comput.-Aided Des. Integr. Circuits Syst. IEEE Trans. 25(3), 504–517 (2006)CrossRefGoogle Scholar
  67. 67.
    Suzuki, K., Wakita, K.: Extracting multi-facet community structure from bipartite networks. 2009 Int. Conf. Comput. Sci. Eng. 4, 312–319 (2009)Google Scholar
  68. 68.
    Taramasco, C., Cointet, J.-P., Roth, C.: Academic team formation as evolving hypergraphs. Scientometrics 85(3), 721–740 (2010)CrossRefGoogle Scholar
  69. 69.
    Tyler, J.R., Wilkinson, D.M., Huberman, B.A.: Email as spectroscopy: automated discovery of community structure within organizations. In: Communities and Technologies, pp. 81–96. Kluwer, Norwell (2003)Google Scholar
  70. 70.
    Wan, L., Liao, J., Zhu, X.: CDPM: finding and evaluating community structure in social networks. In: Proceedings of the 4th International Conference on Advanced Data Mining and Applications, ADMA ’08, pp. 620–627. Springer, Berlin/Heidelberg (2008)Google Scholar
  71. 71.
    Wan, L., Liao, J., Wang, C., Zhu, X.: JCCM: joint cluster communities on attribute and relationship data in social networks. Adv. Data Min. Appl. 5678(60525110), 671–679 (2009)CrossRefGoogle Scholar
  72. 72.
    Ward, J.H.: Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58(301), 236–244 (1963)CrossRefGoogle Scholar
  73. 73.
    Wu, F.Y.: The potts model. Rev. Mod. Phys. 54(1), 235–268 (1982)CrossRefGoogle Scholar
  74. 74.
    Wu, F., Huberman, B.A.: Finding communities in linear time: a physics approach. Eur. Phys. J. B Condens. Matter 38(2), 331–338 (2003)CrossRefGoogle Scholar
  75. 75.
    Yang, T., Chi, Y., Zhu, S., Gong, Y., Jin, R.: A bayesian approach toward finding communities and their evolutions in dynamic social networks. Work, pp. 990–1001 (2009)Google Scholar
  76. 76.
    Yang, B., Liu, D., Liu, J., Furht, B.: Discovering Communities from Social Networks: Methodologies and Applications. Springer, Boston (2010)Google Scholar
  77. 77.
    Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33(4), 452–473 (1977)Google Scholar
  78. 78.
    Zaidi, F., Sallaberry, A., Melancon, G.: Revealing hidden community structures and identifying bridges in complex networks: an application to analyzing contents of web pages. In: IEEE/WIC/ACM International Conference on Web, pp. 198–205. IEEE, Washington, DC (2009)Google Scholar
  79. 79.
    Zhou, H., Lipowsky, R.: Network brownian motion: a new method to measure vertex-vertex proximity and to identify communities and subcommunities. In: International Conference on Computational Science. Lecture Notes in Computer Science, vol. 3038, pp. 1062–1069. Springer, Berlin/New York (2004)Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Laboratoire de Genie Informatique et d’Ingenierie de Production (LGI2P)EMA - Ecole des Mines, Site EERIENîmes cedex 1France

Personalised recommendations