Advertisement

Exploiting Social Media for Music Information Retrieval

  • Markus SchedlEmail author
Chapter
Part of the Computer Communications and Networks book series (CCN)

Abstract

This chapter will first provide an introduction to information retrieval (IR) in general, before briefly explaining the research field of music information retrieval (MIR). Hereafter, we will discuss why and how social media mining (SMM) techniques can be beneficially employed in the context of MIR. More precisely, motivations for the common MIR tasks of music similarity computation, music popularity estimation, and auto-tagging musicwill be provided, and the current state-of-the-art in employing SMM techniques to these three tasks will be elaborated.

Keywords

Audio Signal Mean Average Precision Audio Feature Music Piece Semantic Label 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aucouturier, J.-J., Pachet, F., Sandler, M.: “The way it sounds”: timbre models for analysis and retrieval of music signals. IEEE Trans. Multimed. 7(6), 1028–1035 (2005)CrossRefGoogle Scholar
  2. 2.
    Baccigalupo, C., Plaza, E., Donaldson, J.: Uncovering affinity of artists to multiple genres from social behaviour data. In: Proceedings of the 9th International Conference on Music Information Retrieval (ISMIR), Philadelphia (2008)Google Scholar
  3. 3.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval – The Concepts and Technology Behind Search,2nd edn. Pearson, Harlow (2011)Google Scholar
  4. 4.
    Baltrunas, L., Kaminskas, M., Ludwig, B., Moling, O., Ricci, F., Lüke, K.-H., Schwaiger, R.: InCarMusic: context-aware music recommendations in a car. In: International Conference on Electronic Commerce and Web Technologies (EC-Web), Toulouse (2011)Google Scholar
  5. 5.
    Baum, L.E., Petrie, T.: Statistical inference for probabilistic functions of finite state Markov chains. Ann. Math. Stat. 37(6), 1554–1563 (1966)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Berenzweig, A., Logan, B., Ellis, D.P., Whitman, B.: A large-scale evaluation of acoustic and subjective music similarity measures. In: Proceedings of the 4th International Conference on Music Information Retrieval (ISMIR), Baltimore (2003)Google Scholar
  7. 7.
    Blanco, R., Lioma, C.: Graph-based term weighting for information retrieval. Inf. Retr. 15(1), 54–92 (2012)CrossRefGoogle Scholar
  8. 8.
    Büttcher, S., Clarke, C.L.A., Cormack, G.V.: Information Retrieval: Implementing and Evaluating Search Engines. MIT, Cambridge (2010)zbMATHGoogle Scholar
  9. 9.
    Casey, M.A., Veltkamp, R., Goto, M., Leman, M., Rhodes, C., Slaney, M.: Content-based music information retrieval: current directions and future challenges. Proc. IEEE 96, 668–696 (2008)CrossRefGoogle Scholar
  10. 10.
    Celma, O.: Music Recommendation and Discovery – The Long Tail, Long Fail, and Long Play in the Digital Music Space. Springer, Berlin (2010)Google Scholar
  11. 11.
    Celma, O., Lamere, P.: ISMIR 2007 tutorial: music recommendation. http://mtg.upf.edu/~ocelma/MusicRecommendationTutorial-ISMIR2007. Accessed Dec 2007. September 23–27 2007
  12. 12.
    Cohen, W.W., Fan, W.: Web-collaborative filtering: recommending music by crawling the web. WWW9/Comput. Netw. 33(1–6), 685–698 (2000)Google Scholar
  13. 13.
    Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19(90), 297–301 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Coviello, E., Chan, A.B., Lanckriet, G.: Time series models for semantic music annotation. IEEE Trans. Audio Speech Lang. Process. 19(5), 1343–1359 (2011)CrossRefGoogle Scholar
  15. 15.
    Cunningham, S.J., Downie, J.S., Bainbridge, D.: “The pain, the pain”: modelling music information behavior and the songs we hate. In: Proceedings of the 6th International Conference on Music Information Retrieval (ISMIR), London (2005)Google Scholar
  16. 16.
    Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41, 391–407 (1990)CrossRefGoogle Scholar
  17. 17.
    Downie, J.S.: The scientific evaluation of music information retrieval systems: foundations and future. Comput. Music J. 28, 12–23 (2004)CrossRefGoogle Scholar
  18. 18.
    Ellis, D.P., Whitman, B., Berenzweig, A., Lawrence, S.: The quest for ground truth in musical artist similarity. In: Proceedings of 3rd International Conference on Music Information Retrieval (ISMIR), Paris (2002)Google Scholar
  19. 19.
    Geleijnse, G., Schedl, M., Knees, P.: The quest for ground truth in musical artist tagging in the social web era. In: Proceedings of the 8th International Conference on Music Information Retrieval (ISMIR), Vienna (2007)Google Scholar
  20. 20.
    Gouyon, F., Herrera, P., Gomez, E., Cano, P., Bonada, J., Loscos, A., Amatriain, X., Serra, X.: Content processing of music audio signals. In: Polotti, P., Roccheso, D. (eds.) Sound to Sense, Sense to Sound: A State-of-the-Art in Sound and Music Computing, pp. 83–160. Logos Verlag, Berlin GmbH (2008)Google Scholar
  21. 21.
    Grace, J., Gruhl, D., Haas, K., Nagarajan, M., Robson, C., Sahoo, N.: Artist ranking through analysis of on-line community comments. In: Proceedings of the 17th ACM International World Wide Web Conference (WWW 2008), Bejing (2008)Google Scholar
  22. 22.
    Grossman, D.A., Frieder, O.: Information Retrieval: Algorithms and Heuristics. Kluwer International Series on Information Retrieval. Springer, Dordrecht (2004)zbMATHGoogle Scholar
  23. 23.
  24. 24.
  25. 25.
    http://echonest.com. Accessed Feb 2012
  26. 26.
  27. 27.
    http://last.fm. Accessed Jan 2012
  28. 28.
    http://music.strands.com. Accessed Nov 2009
  29. 29.
    http://www.allmusic.com. Accessed Jan 2010
  30. 30.
    http://www.artofthemix.org. Accessed Feb 2008
  31. 31.
    http://www.bandmetrics.com. Accessed May 2010
  32. 32.
    http://www.bigchampagne.com. Accessed May 2010
  33. 33.
    http://www.exalead.com. Accessed Aug 2010
  34. 34.
    http://www.facebook.com. Accessed Feb 2012
  35. 35.
    http://www.freebase.com. Accessed Jan 2010
  36. 36.
    http://www.freedb.org. Accessed Feb 2008
  37. 37.
    http://www.google.com. Accessed Mar 2010
  38. 38.
    http://www.gracenote.com. Accessed Feb 2008
  39. 39.
    http://www.ip2location.com. Accessed Mar 2010
  40. 40.
    http://www.myspace.com. Accessed Nov 2009
  41. 41.
    http://www.spotify.com. Accessed Feb 2012
  42. 42.
    http://www.twitter.com. Accessed Jan 2012
  43. 43.
    http://www.youtube.com. Accessed Feb 2012
  44. 44.
    Jolliffe, I.T.: Principal Component Analysis. Springer, New York (1986)Google Scholar
  45. 45.
    Jones, K.S., Walker, S.S., Robertson, S.E.: A probabilistic model of information retrieval: development and comparative experiments. Inf. Process. Manag. 36, 779–808 (2000)CrossRefGoogle Scholar
  46. 46.
    Kim, J.H., Tomasik, B., Turnbull, D.: Using artist similarity to propagate semantic information. In: Proceedings of the 10th International Society for Music Information Retrieval Conference (ISMIR), Kobe (2009)Google Scholar
  47. 47.
    Knees, P., Pampalk, E., Widmer, G.: Artist classification with web-based data. In: Proceedings of the 5th International Symposium on Music Information Retrieval (ISMIR), Barcelona, pp. 517–524 (2004)Google Scholar
  48. 48.
    Knees, P., Schedl, M., Pohle, T., Widmer, G.: An innovative three-dimensional user interface for exploring music collections enriched with meta-information from the web. In: Proceedings of the 14th ACM International Conference on Multimedia, Santa Barbara (2006)Google Scholar
  49. 49.
    Koenigstein, N., Shavitt, Y.: Song ranking based on piracy in peer-to-peer networks. In: Proceedings of the 10th International Society for Music Information Retrieval Conference (ISMIR 2009), Kobe (2009)Google Scholar
  50. 50.
    Koenigstein, N., Shavitt, Y., Tankel, T.: Spotting out emerging artists using geo-aware analysis of P2P query strings. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), Las Vegas (2008)Google Scholar
  51. 51.
    Kohonen, T.: Self-Organizing Maps. Springer Series in Information Sciences, vol. 30, 3rd edn. Springer, Berlin (2001)Google Scholar
  52. 52.
    Lanckriet, G., Turnbull, D., Barrington, L.: Five approaches to collecting tags for music. In: Proceedings of the 9th International Society for Music Information Retrieval Conference (ISMIR), Philadelphia (2008)Google Scholar
  53. 53.
    Law, E., von Ahn, L.: Input-agreement: a new mechanism for collecting data using human computation games. In: Proceedings of the 27th International Conference on Human Factors in Computing Systems (CHI), Boston, pp. 1197–1206 (2009)Google Scholar
  54. 54.
    Law, E., von Ahn, L., Dannenberg, R., Crawford, M.: Tagatune: a game for music and sound annotation. In: Proceedings of the 8th International Conference on Music Information Retrieval (ISMIR), Vienna (2007)Google Scholar
  55. 55.
    Lee, J.H.: Analysis of user needs and information features in natural language queries seeking user information. J. Am. Soc. Inf. Sci. Technol. (JASIST) 61, 1025–1045 (2010)CrossRefGoogle Scholar
  56. 56.
    Levy, M., Sandler, M.: A semantic space for music derived from social tags. In: Proceedings of the 8th International Conference on Music Information Retrieval (ISMIR), Vienna (2007)Google Scholar
  57. 57.
    Li, T., Ogihara, M., Tzanetakis, G. (eds.): Music Data Mining. CRC/Chapman Hall, Boca Raton (2011)Google Scholar
  58. 58.
    Logan, B., Ellis, D.P., Berenzweig, A.: Toward evaluation techniques for music similarity. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR): Workshop on the Evaluation of Music Information Retrieval Systems, Toronto (2003)Google Scholar
  59. 59.
    Luhn, H.P.: A statistical approach to mechanized encoding and searching of literary information. IBM J. 1, 309–317 (1957)MathSciNetCrossRefGoogle Scholar
  60. 60.
    MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Cam, L.M.L., Neyman, J. (eds.) Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. Statistics, vol. I, pp. 281–297. University of California Press, Berkeley/Los Angeles (1967)Google Scholar
  61. 61.
    Mandel, M.I., Ellis, D.P.: A Web-based game for collecting music metadata. In: Proceedings of the 8th International Conference on Music Information Retrieval (ISMIR), Vienna (2007)Google Scholar
  62. 62.
    Mandel, M.I., Ellis, D.P.W.: A web-based game for collecting music metadata. J. New Music Res. 37(2), 151–165 (2008)CrossRefGoogle Scholar
  63. 63.
    Mandel, M.I., Pascanu, R., Eck, D., Bengio, Y., Aiello, L.M., Schifanella, R., Menczer, F.: Contextual tag inference. ACM Trans. Multimed. Comput. Commun. Appl. 7S(1), 32:1–32:18 (2011)Google Scholar
  64. 64.
    McFee, B., Lanckriet, G.: The natural language of playlists. In: Proceedings of the 12th International Society for Music Information Retrieval Conference (ISMIR), Miami (2011)Google Scholar
  65. 65.
    Miotto, R., Barrington, L., Lanckriet, G.: Improving auto-tagging by modeling semantic co-occurrences. In: Proceedings of the 11th International Society for Music Information Retrieval Conference (ISMIR 2010), Utrecht (2010)Google Scholar
  66. 66.
    Pachet, F., Westerman, G., Laigre, D.: Musical data mining for electronic music distribution. In: Proceedings of the 1st International Conference on Web Delivering of Music (WEDELMUSIC), Florence (2001)Google Scholar
  67. 67.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing order to the web. In: Proceedings of the Annual Meeting of the American Society for Information Science (ASIS), Pittsburgh, pp. 161–172 (1998)Google Scholar
  68. 68.
    Pohle, T., Knees, P., Schedl, M., Pampalk, E., Widmer, G.: “Reinventing the wheel”: a novel approach to music player interfaces. IEEE Trans. Multimed. 9, 567–575 (2007)CrossRefGoogle Scholar
  69. 69.
    Robertson, S., Walker, S., Hancock-Beaulieu, M.: Large test collection experiments on an operational, interactive system: okapi at TREC. Inf. Process. Manag. 31, 345 (1995)CrossRefGoogle Scholar
  70. 70.
    Robertson, S., Walker, S., Beaulieu, M.: Okapi at TREC-7: automatic ad hoc, filtering, VLC and interactive track. In: Proceedings of the 7th Text REtrieval Conference (TREC-7), Gaithersburg, pp. 253–264 (1999)Google Scholar
  71. 71.
    Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun. ACM 18(11), 613–620 (1975)zbMATHCrossRefGoogle Scholar
  72. 72.
    Schedl, M.: Automatically extracting, analyzing, and visualizing information on music artists from the world wide web. Ph.D. thesis, Johannes Kepler University Linz, Linz (2008)Google Scholar
  73. 73.
    Schedl, M.: On the use of microblogging posts for similarity estimation and artist labeling. In: Proceedings of the 11th International Society for Music Information Retrieval Conference (ISMIR), Utrecht (2010)Google Scholar
  74. 74.
    Schedl, M.: #nowplaying madonna: a large-scale evaluation on estimating similarities between music artists and between movies from microblogs. Inf. Retr. 15, 183–217 (2012)CrossRefGoogle Scholar
  75. 75.
    Schedl, M., Knees, P.: Context-based music similarity estimation. In: Proceedings of the 3rd International Workshop on Learning the Semantics of Audio Signals (LSAS), Graz (2009)Google Scholar
  76. 76.
    Schedl, M., Knees, P.: Personalization in multimodal music retrieval. In: Proceedings of the 9th Workshop on Adaptive Multimedia Retrieval (AMR), Barcelona (2011)Google Scholar
  77. 77.
    Schedl, M., Pohle, T.: Enlightening the sun: a user interface to explore music artists via multimedia content. Multimed. Tools Appl. Spec. Issue Semant. Digit. Media Technol. 49(1), 101–118 (2010)Google Scholar
  78. 78.
    Schedl, M., Knees, P., Widmer, G.: A web-based approach to assessing artist similarity using co-occurrences. In: Proceedings of the 4th International Workshop on Content-Based Multimedia Indexing (CBMI), Riga (2005)Google Scholar
  79. 79.
    Schedl, M., Pohle, T., Koenigstein, N., Knees, P.: What’s hot? Estimating country-specific artist popularity. In: Proceedings of the 11th International Society for Music Information Retrieval Conference (ISMIR), Utrecht (2010)Google Scholar
  80. 80.
    Schedl, M., Knees, P., Böck, S.: Investigating the similarity space of music artists on the micro-blogosphere. In: Proceedings of the 12th International Society for Music Information Retrieval Conference (ISMIR), Miami (2011)Google Scholar
  81. 81.
    Schedl, M., Hauger, D., Schnitzer, D.: A model for serendipitous music retrieval. In: Proceedings of the 16th International Conference on Intelligent User Interfaces (IUI 2012): 2nd International Workshop on Context-Awareness in Retrieval and Recommendation (CaRR 2012), Lisbon (2012)Google Scholar
  82. 82.
    Seyerlehner, K., Schedl, M., Knees, P., Sonnleitner, R.: A refined block-level feature set for classification, similarity and tag prediction. In: Extended Abstract to the Music Information Retrieval Evaluation eXchange (MIREX 2011)/12th International Society for Music Information Retrieval Conference (ISMIR 2011), Miami (2009)Google Scholar
  83. 83.
    Seyerlehner, K., Widmer, G., Pohle, T.: Fusing block-level features for music similarity estimation. In: Proceedings of the 13th International Conference on Digital Audio Effects (DAFx-10), Graz (2010)Google Scholar
  84. 84.
    Shavitt, Y., Weinsberg, U.: Songs clustering using peer-to-peer co-occurrences. In: Proceedings of the IEEE International Symposium on Multimedia (ISM): International Workshop on Advances in Music Information Research (AdMIRe), San Diego (2009)Google Scholar
  85. 85.
    Smolensky, P.: Information Processing in Dynamical Systems: Foundations of Harmony Theory, pp. 194–281. MIT, Cambridge (1986)Google Scholar
  86. 86.
    Sordo, M.: Semantic annotation of music collections: a computational approach. Ph.D. thesis, Universitat Pompeu Fabra, Barcelona (2012)Google Scholar
  87. 87.
    Sordo, M., Gouyon, F., Sarmento, L.: A method for obtaining semantic facets of music tags. In: Proceedings of the Workshop on Music Recommendation and Discovery (WOMRAD), Barcelona (2010)Google Scholar
  88. 88.
    Stober, S.: Adaptive methods for user-centered organization of music collections. Ph.D. thesis, Otto-von-Guericke-University, Magdeburg (2011)Google Scholar
  89. 89.
    Turnbull, D., Barrington, L., Torres, D., Lanckriet, G.: Towards musical query-by-semantic-description using the CAL500 data set. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), Amsterdam (2007)Google Scholar
  90. 90.
    Turnbull, D., Liu, R., Barrington, L., Lanckriet, G.: A game-based approach for collecting semantic annotations of music. In: Proceedings of the 8th International Conference on Music Information Retrieval (ISMIR), Vienna (2007)Google Scholar
  91. 91.
    Vasconcelos, N.: Image indexing with mixture hierarchies. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Kauai (2001)Google Scholar
  92. 92.
    Whitman, B., Lawrence, S.: Inferring descriptions and similarity for music from community metadata. In: Proceedings of the 2002 International Computer Music Conference (ICMC), Göteborg, pp. 591–598 (2002)Google Scholar
  93. 93.
    Wolff, D., Weyde, T.: Adapting metrics for music similarity using comparative ratings. In: Proceedings of the 12th International Society for Music Information Retrieval Conference (ISMIR), Miami (2011)Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Department of Computational PerceptionJohannes Kepler UniversityLinzAustria

Personalised recommendations