Context-Aware Content Adaptation for Personalised Social Media Access

Chapter
Part of the Computer Communications and Networks book series (CCN)

Abstract

Accessing, sharing, and delivering social media involve online user-to-user social interactions. These interactions can be characterised by one-to-many or many-to-many communications established amongst numerous users. This in turn makes the whole environment a very heterogeneous one, comprising diverse user devices, fixed and mobile access network technologies, content representation formats, user needs and preferences, and media usage and consumption environment characteristics. Owing to this very heterogeneous nature of social media access, personalised access to the social media is a significant challenge for maximising the user experience and satisfaction. This chapter presents context-aware social media content adaptation as the key technology to address this challenge. It introduces the importance of context awareness in personalised social media access, and how it can be coupled with content adaptation and adaptation decision-taking mechanisms to provide a complete solution for both the technical and non-technical (i.e. social) challenges faced. Detailed discussions focus on describing various adaptation and decision-taking types and operations while also pointing at a number of open issues for future research, so as to address those highlighted challenges for realising true personalised social media access environments.

Keywords

Migration Expense Editing 

Notes

Acknowledgments

The authors would like to thank their past and present I-Lab colleagues as well as the partners of the EU-sponsored collaborative research projects, particularly those participated in VISNET II NoE, who provided the inspirations for composing some of the discussions presented in this chapter.

References

  1. 1.
    Aarts, E., Harwick, R., Schuurmans, M.: Ambient intelligence. In: Denning, P.J. (ed.) The Invisible Future: The Seamless Integration of Technology into Everyday Life, pp. 235–250. McGraw-Hill, New York (2002)Google Scholar
  2. 2.
    Zelkha, E., Epstein, B.: From devices to ambient intelligence. In: Proceedings of Digital Living Room Conference, Laguna Niguel, USA, June 1998Google Scholar
  3. 3.
    Sauter, M.: Beyond 3G – Bringing Networks, Terminals and the Web Together: LTE, WiMAX, IMS, 4G Devices and the Mobile Web 2.0. Wiley, Chichester (2009)Google Scholar
  4. 4.
    Vetro, A., Christopoulos, C., Ebrahimi, T. (eds.): Special issue on universal multimedia access. IEEE Signal Process. Mag. 20(2), 16–73 (2003)Google Scholar
  5. 5.
    Pereira, F., Burnett, I.S., Chang, S.-F. (eds.): Special issue on multimedia adaptation. Signal Process. Image Commun. 18(8), 597–768 (2003)Google Scholar
  6. 6.
    Martinez, J.M., Valdes, V., Bescos, J., Herranz, L.: Introducing CAIN: a metadata-driven content adaptation manager integrating heterogeneous content adaptation tools. In: Proceedings of the 6th International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS 2005), Montreux, 13–15 April 2005Google Scholar
  7. 7.
    Sofokleous, A.A., Angelides, M.C.: DCAF: an MPEG-21 dynamic content adaptation framework. Multimed. Tool. Appl. 40(2), 151–182 (2008)CrossRefGoogle Scholar
  8. 8.
    Ardon, S., Gunningberg, P., Landfeldt, B., Ismailov, Y., Portmann, M., Seneviratne, A.: MARCH: a distributed content adaptation architecture. Int. J. Commun. Syst. 16(1), 97–115 (2003)MATHCrossRefGoogle Scholar
  9. 9.
    Fawaz, Y., Berhe, G., Brunie, L., Scuturici, V.-M., Coquil, D.: Efficient execution of service composition for content adaptation in pervasive computing. Int. J. Digit. Multimed. Broadcasting 2008, 1–10 (2008). article ID 851628CrossRefGoogle Scholar
  10. 10.
    Kaced, A.R., Moissinac, J.-C.: Secure intermediary caching in mobile wireless networks using asymmetric cipher sequences based encryption. Lect. Note. Comput. Sci. Mobile Ad-Hoc Sens. Netw. 4864, 725–736 (2007)Google Scholar
  11. 11.
    Lei, Z., Georganas, N.D.: Context-based media adaptation in pervasive computing. In: Proceedings of the Canadian Conference on Electrical and Computer Engineering (CCECE 2001), vol. 2, pp. 913–918, Toronto, Ontario, 13–16 May 2001Google Scholar
  12. 12.
    Hutter, A., Amon, P., Panis, G., Delfosse, E., Ransburg, M., Hellwagner, H.: Automatic adaptation of streaming multimedia content in a dynamic and distributed environment. In Proceedings of the IEEE International Conference on Image Processing (ICIP 2005), pp. 716–719, Genoa, 11–14 September 2005Google Scholar
  13. 13.
    Pokraev, S., Costa, P.D., Pereira Filho, J.G., Zuidweg, M., Koolwaaij, J.W., van Setten, M.: Context-aware services: state-of-the-art. TelematicaInstituut, Technical Report TI/RS/2003/137, November 2003Google Scholar
  14. 14.
    Carreras, A., Andrade, M.T., Masterton, T., Kodikara Arachchi, H., Barbosa, V., Dogan, S., Delgado, J., Kondoz, A.M.: Contextual information in virtual collaboration systems beyond current standards. In: Proceedings of the 10th International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS 2009), pp. 209–213, London, 6–8 May 2009Google Scholar
  15. 15.
    Naguib, H., Coulouris, G., Mitchell, S.: Middleware support for context-aware multimedia applications. In: Proceedings of the IFIP TC6/WG6.1 3rd International Working Conference on New Developments in Distributed Applications and Interoperable Systems, pp. 9–22, Krakow, Poland, 17–19 September 2001Google Scholar
  16. 16.
    Andrade, M.T., Bretillon, P., Castro, H., Carvalho, P., Feiten, B.: Context-aware content adaptation: a systems approach. In: Proceedings of the European Symposium Mobile Media Delivery (EUMOB 2006), Sardinia, 20 September 2006Google Scholar
  17. 17.
    Lum, W.Y., Lau, F.C.M.: A context-aware decision engine for content adaptation. IEEE Pervasive Comput. 1(3), 41–49 (2002)CrossRefGoogle Scholar
  18. 18.
    Andrade, M.T., Delgado, J., Carreras, A., Nasir, S., Kodikara Arachchi, H., Dogan, S., Uzuner, H., Nur, G.: First developments on context-based adaptation. Networked Audiovisual Media Technologies (VISNET II NoE), Technical Project Deliverable D2.1.1, August 2007Google Scholar
  19. 19.
    Dey, A.K.: Providing architectural support for building context-aware applications. Ph.D. thesis, College of Computing, Georgia Institute of Technology, Atlanta (2000)Google Scholar
  20. 20.
    Information Technology-Multimedia Framework (MPEG-21)-Part 7: Digital Item Adaptation. ISO/IEC Standard ISO-IEC 21000–7:2007, December 2007Google Scholar
  21. 21.
    Vetro, A., Timmerer, C., Devillers, S.: Digital item adaptation – tools for universal multimedia access. In: Burnett, I.S., Pereira, F., Van de Walle, R., Koenen, R. (eds.) The MPEG-21 Book, pp. 243–281. Wiley, Chichester (2006)CrossRefGoogle Scholar
  22. 22.
    Timmerer, C., Devillers, S., Vetro, A.: Digital item adaptation – coding format independence. In: Burnett, I.S., Pereira, F., Van de Walle, R., Koenen, R. (eds.) The MPEG-21 Book, pp. 283–331. Wiley, Chichester (2006)CrossRefGoogle Scholar
  23. 23.
    Vetro, A., Christopoulos, C., Sun, H.: Video transcoding architectures and technique: an overview. IEEE Signal Process. Mag. 20(2), 18–29 (2003)CrossRefGoogle Scholar
  24. 24.
    Demircin, M.U., van Beek, P., Altunbasak, Y.: Delay-constrained and R-D optimized transrating for high-definition video streaming over WLANs. IEEE Trans. Multimed. 10(6), 1155–1168 (2008)CrossRefGoogle Scholar
  25. 25.
    Kodikara Arachchi, H., Dogan, S., Uzuner, H., Kondoz, A.M.: Utilisingmacroblock SKIP mode information to accelerate cropping of an H.264/AVC encoded video sequence for user centric content adaptation. In: Proceedings of the 3rd International Conference on Automated Production of Cross Media Content for Multi-Channel Distribution (AXMEDIS 2007), Barcelona, 28–30 November 2007Google Scholar
  26. 26.
    Liu, H., Xie, X., Ma, W.Y., Zhang, H.J.: Automatic browsing of large pictures on mobile devices. In: Proceedings of the 11th ACM International Conference on Multimedia (Multimedia 2003), Berkeley, 2–8 November 2003Google Scholar
  27. 27.
    Money, A.G., Agius, H.: Video summarisation: a conceptual framework and survey of the state of the art. J. Vis. Commun. Image Represent. 19(2), 121–143 (2008)CrossRefGoogle Scholar
  28. 28.
    Szeliski, R.: Image mosaicing for tele-reality applications. In: Proceedings of the 2nd IEEE Workshop on Applications of Computer Vision, pp. 44–53, Sarasota, 5–7 December 1994Google Scholar
  29. 29.
    Dawson, T.P., Read, C.J.: Multimedia network picture-in-picture. US 20,040,168,185, 26 Aug 2004Google Scholar
  30. 30.
    Schroeter, J.: Text to-speech (TTS) synthesis. In: Dorf, R.C. (ed.) Circuits, Signals, Speech and Image Processing: The Electrical Engineering Handbook, 3rd edn. CRC Press, Boca Raton (2006)Google Scholar
  31. 31.
    Brill, E., Mooney, R.J.: An overview of empirical natural language processing. AI Mag. 18(4), 13–24 (1997)Google Scholar
  32. 32.
    Selfridge, E., Arizmendi, I., Heeman, P., Williams, J.: Stability and accuracy in incremental speech recognition. In: Proceedings of the 12th Annual SIGdial Meeting on Discourse and Dialogue, Portland, 17–18 June 2011Google Scholar
  33. 33.
    Hosom, J.P.: Automatic speech recognition. In: Bidgoli, H. (ed.) Encyclopaedia of Information Systems, vol. 4, pp. 155–169. Academic, San Francisco (2003)CrossRefGoogle Scholar
  34. 34.
    Hutchins, W.J., Somers, H.L.: An Introduction to Machine Translation. Academic Press, London (1992)MATHGoogle Scholar
  35. 35.
    Carbonell, J.G., Tomit, M.: New approaches to machine translation. In: Proceedings of the Conference on Theoretical and Methodological Issues in Machine Translation of Natural Languages, Colgate University, Hamilton, New York, 14–16 August 1985Google Scholar
  36. 36.
    Hutchins, J.: Commercial systems. In: Somers, H. (ed.) Computers and Translation: A Translator’s Guide. John Benjamins Publishing Company, Philadelphia (2003)Google Scholar
  37. 37.
    Hutchins, J.: Current commercial machine translation systems and computer-based translation tools: system types and their uses. Int. J. Transl. 17(1–2), 5–38 (2005)Google Scholar
  38. 38.
    Ahmad, I., Wei, X., Sun, Y., Zhang, Y.-Q.: Video transcoding: an overview of various techniques and research issues. IEEE Trans. Multimed. 7(5), 793–804 (2005)CrossRefGoogle Scholar
  39. 39.
    Thomas, N., Bull, D., Redmill, D.: A novel H.264 SVC encryption scheme for secure bit-rate transcoding. In: Proceedings of the 27th Picture Coding Symposium (PCS 2009), Chicago, 6–8 May 2009Google Scholar
  40. 40.
    Schwarz, H., Marpe, D., Wiegand, T.: Overview of the scalable video coding extension of the H.264/AVC standard. IEEE Trans. Circuit. Syst. Video Technol. 17(9), 1103–1120 (2007)CrossRefGoogle Scholar
  41. 41.
    Xin, J., Lin, C.-W., Sun, M.-T.: Digital video transcoding. Proc. IEEE 93(1), 84–97 (2005)CrossRefGoogle Scholar
  42. 42.
    Nurmi, P., Floreen, P.: Reasoning in context-aware systems. PhD Thesis. University of Helsinki, Department of Computer Science (2004)Google Scholar
  43. 43.
    Bikakis, A., Patkos, T., Antoniou, G., Plexousakis, D.: A survey of semantics-based approaches for context reasoning in ambient intelligence. In Proceedings of the European Conference on Ambient Intelligence (AmI 2007), Darmstadt, 7–10 November 2007Google Scholar
  44. 44.
    Kassler, A., Schorr, A.: Generic QoS aware media stream transcoding and adaptation. In: Proceedings of the Packet Video Workshop (PV 2003), Nantes, 28–29 April 2003Google Scholar
  45. 45.
    Andrade, M.T., Dogan, S., Carreras, A., Barbosa, V., Kodikara Arachchi, H., Delgado, J., Kondoz, A.M.: Advanced delivery of sensitive multimedia content for better serving user expectations in virtual collaboration applications. Multimed. Tool. Appl. 58(3), 633–661 (2012)CrossRefGoogle Scholar
  46. 46.
    Carreras, A., Delgado, J., Rodriguez, E., Barbosa, V., Andrade, M.T., Kodikara Arachchi, H., Dogan, S., Kondoz, A.M.: A platform for context-aware and digital rights management-enabled content adaptation. IEEE Multimed. 17(2), 74–89 (2010)Google Scholar
  47. 47.
    Kim, J.-G., Wang, Y., Chang, S.-F.: Content-adaptive utility-based video adaptation. In: Proceedings of the IEEE International Conference on Multimedia Computing and Expo (ICME 2003), Baltimore, 6–9 July 2003Google Scholar
  48. 48.
    Wang, Y., Kim, J., Chang, S.-F.: Content-based utility function prediction for real-time mpeg-4 video transcoding. In: Proceedings of the IEEE International Conference on Image Processing (ICIP 2003), pp. 189–192, Barcelona, 14–18 September 2003Google Scholar
  49. 49.
    Jannach, D., Leopold, K., Timmerer, C., Hellwagner, H.: A knowledge-based framework for multimedia adaptation. Appl. Intell. 24(2), 109–125 (2006)CrossRefGoogle Scholar
  50. 50.
    Chikkerur, S., Sundaram, V., Reisslein, M., Karam, L.J.: Objective video quality assessment methods: a classification, review, and performance comparison. IEEE Trans. Broadcast. 57(2), 165–182 (2011)CrossRefGoogle Scholar
  51. 51.
    Lopez, F., Nur, G., Dogan, S., Kodikara Arachchi, H., Mrak, M., Martinez, J.M., Garcia, N., Kondoz, A.: Improving scalable video adaptation in a knowledge-based framework. In: Proceedings of the 11th International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS 2010), Desenzano Del Garda, 12–14 April 2010Google Scholar
  52. 52.
    Lauf, S., Rodriguez, E.: IPMP components. In: Burnett, I.S., Pereira, F., Van de Walle, R., Koenen, R. (eds.) The MPEG-21 Book, pp. 117–138. Wiley, Chichester (2006)CrossRefGoogle Scholar
  53. 53.
    DeMartini, T., Kalter, J., Nguyen, M., Valenzuela, E., Wang, X.: Rights expression language. In: Burnett, I.S., Pereira, F., Van de Walle, R., Koenen, R. (eds.) The MPEG-21 Book, pp. 139–212. Wiley, Chichester (2006)CrossRefGoogle Scholar
  54. 54.
    Barlas, C., Dow, M., Rust, G.: The MPEG-21 rights data dictionary and new approaches to semantics. In: Burnett, I.S., Pereira, F., Van de Walle, R., Koenen, R. (eds.) The MPEG-21 Book, pp. 213–242. Wiley, Chichester (2006)CrossRefGoogle Scholar
  55. 55.
    Lin, E.I., Eskicioglu, A.M., Lagendijk, R.L., Delp, E.J.: Advances in digital video content protection. Proc. IEEE 93(1), 171–183 (2005)CrossRefGoogle Scholar
  56. 56.
    Bormans, J., Gelissen, J., Perkis, A.: MPEG-21: the 21st century multimedia framework. IEEE Signal Process. Mag. 20(2), 53–62 (2003)CrossRefGoogle Scholar
  57. 57.
    Wang, X., DeMartini, T., Wragg, B., Paramasivam, M., Barlas, C.: The MPEG-21 rights expression language and rights data dictionary. IEEE Trans. Multimed. 7(3), 408–417 (2005)CrossRefGoogle Scholar
  58. 58.
    Carreras, A., Rodriguez, E., Dogan, S., Kodikara Arachchi, H., Perramon, X., Delgado, J., Kondoz, A.M.: Architectures and technologies for adapting secured content in governed multimedia applications. IEEE Multimed. 18(4), 48–61 (2011)CrossRefGoogle Scholar
  59. 59.
    Apostolopoulos, J.G., Wee, S.J.: Secure scalable streaming enabling transcoding without decryption. In: Proceedings of the IEEE International Conference on Image Processing (ICIP 2001), vol. 1, pp. 437–440, Thessaloniki, 7–10 October 2001Google Scholar
  60. 60.
    Apostolopoulos, J.G.: Secure media streaming and secure adaptation for non-scalable video. In: Proceedings of the IEEE International Conference on Image Processing (ICIP 2004), vol. 3, pp. 1763–1766, Singapore, 24–27 October 2004Google Scholar
  61. 61.
    Zeng, W., Lan, J., Zhuang, X.: Security for multimedia adaptation: architectures and solutions. IEEE Multimed. 13(2), 68–76 (2006)CrossRefGoogle Scholar
  62. 62.
    Kodikara Arachchi, H., Perramon, X., Dogan, S., Kondoz, A.M.: Adaptation-aware encryption of scalable H.264/AVC video for content security. Signal Process. Image Commun. 24(6), 468–483 (2009)CrossRefGoogle Scholar
  63. 63.
    Hellwagner, H., Kuschnig, R., Stutz, T., Uhl, A.: Efficient in-network adaptation of encrypted H.264/SVC content. Signal Process. Image Commun. 24(9), 740–758 (2009)CrossRefGoogle Scholar
  64. 64.
    Carreras, A., Delgado, J., Rodriguez, E., Tous, R.: The impact of contextual information on user privacy in social networks. In: Proceedings of the 1st Workshop on Privacy and Protection in Web-Based Social Networks, pp. 35–44, Barcelona, 8–12 June 2009Google Scholar
  65. 65.
    Zhu, Y., Hu, Z., Wang, H., Hu, H., Ahn, G.-J.: A collaborative framework for privacy protection in online social networks. In: Proceedings of the 6th International Conference on Collaborative Computing (CollaborateCom 2010), pp. 40–45, Chicago, 9–12 October 2010Google Scholar
  66. 66.
    Tumer, A., Dogac, A., Toroslu, I.H.: A semantic based privacy framework for web services. Computer Science: Intelligent Techniques for Web Personalisation, vol. 3169, pp. 289–305, Springer-Verlag GmbH, Berlin, November 2005Google Scholar
  67. 67.
    Sheppard, N.P., Safavi-Naini, R.: Protecting privacy with the MPEG-21 IPMP framework. Computer Science: Privacy Enhancing Technologies, vol. 4258, pp. 152–171, Springer-Verlag GmbH, Berlin, December 2006Google Scholar
  68. 68.
    Kenny, S., Korba, L.: Applying digital rights management systems to privacy rights. Comput. Secur. 21(7), 648–664 (2002)CrossRefGoogle Scholar
  69. 69.
    Rodriguez, E., Rodriguez, V., Carreras, A., Delgado, J.: A digital rights management approach to privacy in online social networks. In: Proceedings of the 1st Workshop on Privacy and Protection in Web-based Social Networks, pp. 45–53, Barcelona, 8–12 June 2009Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.I – Lab Multimedia Communications ResearchUniversity of SurreyGuildfordUK

Personalised recommendations