Skip to main content

Selection of Key Factors and Parameters in Assessment Algorithms

  • Chapter
Control Performance Management in Industrial Automation

Part of the book series: Advances in Industrial Control ((AIC))

  • 1987 Accesses

Abstract

Performance assessment algorithms contain many options and parameters that must be specified by the user. These factors substantially affect the accuracy and acceptability of the results of assessment exercises. A fundamental basis for performance assessment is to record and carefully inspect suitable closed-loop data. Pre-processing operations, which are suggested and those which should be strictly avoided, are given in this chapter. The first decision in control performance assessment is the choice of a (time-series) model structure for describing the net dynamic response associated with the control error. There are different possible structures and different possible identification techniques. The most widely used of them are briefly described. Particularly for MV and GMV benchmarking, it is decisive to properly select or estimate the parameters’ time delay and model orders. This topic is discussed, and some of the basic models and identification techniques concerning assessment accuracy and computational load are compared, to provide suggestions of the best suited approaches to be applied in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The data sets considered can be downloaded freely from www.esat.kuleuven.ac.be/sista/daisy.

References

  • Bezergianni S, Georgakis C (2003) Evaluation of controller performance-use of models derived by subspace identification. Int J Adapt Control Signal Process 17:527–552

    Article  MATH  Google Scholar 

  • Björklund S (2003) A survey and comparison of time delay estimation methods in linear systems. PhD thesis, Lund Institute of Technology, Sweden

    Google Scholar 

  • Box GEP, Jenkins GM (1970) Time series analysis: forcasting and control. Holden-Day, Oakland

    Google Scholar 

  • Box GEP, MacGregor J (1974) The analysis of closed-loop dynamic stochastic systems. Technometrics 18:371–380

    Article  MathSciNet  Google Scholar 

  • Davies L, Gather U (1993) The identification of multiple outliers. J Am Stat Assoc 88:782–792

    Article  MathSciNet  MATH  Google Scholar 

  • Desborough L, Harris T (1992) Performance assessment measures for univariate feedback control. Can J Chem Eng 70:1186–1197

    Article  Google Scholar 

  • Dumont GA, Kammer L, Allison BJ, Ettaleb L, Roche AA (2002) Control performance monitoring: new developments and practical issues. In: Proc IFAC world congress, Barcelona, Spain

    Google Scholar 

  • Elnaggar A, Dumont GA, Elshafei A-L (1991) Delay estimation using variable regression. In: Proc American control confer, Boston, USA, pp 2812–2817

    Google Scholar 

  • Favoreel W, Moor BD, van Overschee P (2000) Subspace state space system identification for industrial processes. J Process Control 10:149–155

    Article  Google Scholar 

  • Fu Y, Dumont GA (1993) Optimum Laguerre time scale and its on-line estimation. IEEE Trans Autom Control 38:934–938

    Article  MathSciNet  MATH  Google Scholar 

  • Goradia DB, Lakshminarayanan S, Rangaiah GP (2005) Attainment of PI achievable performance for linear SISO process with deadtime by iterative tuning. Can J Chem Eng 83:723–736

    Article  Google Scholar 

  • Gunnarsson S, Wahlberg B (1991) Some asymptotic results in recursive identification using Laguerre models. Int J Adapt Control Signal Process 5:313–333

    Article  MATH  Google Scholar 

  • Haarsma G, Nikolaou M (2000) Multivariate controller performance monitoring: lessons from an application to snack food process. www.chee.uh.edu/faculty/nikolaou/FryerMonitoring.pdf

  • He X, Asada H (1993) A new method for identifying orders of input–output models for nonlinear dynamical systems. In: Proc American control confer, San Francisco, USA, pp 2520–2523

    Google Scholar 

  • Hjalmarsson H, Gevers M, de Bruyne F (1996) For model-based control design, closed-loop identification gives better performance. Automatica 32:1659–1673

    Article  MATH  Google Scholar 

  • Horch A (2000) Condition monitoring of control loops. PhD thesis, Royal Institute of Technology, Stockholm, Sweden

    Google Scholar 

  • Huang B (2002) Minimum variance control and performance assessment of time variant processes. J Process Control 12:707–719

    Article  MATH  Google Scholar 

  • Huang B, Kadali R (2008) Dynamic modelling, predictive control and performance monitoring. Springer, Berlin

    Google Scholar 

  • Huang B, Shah SL (1999) Performance assessment of control loops. Springer, Berlin

    Book  Google Scholar 

  • Huang B, Ding SX, Qin J (2005a) Closed-loop subspace identification: an orthogonal projection approach. J Process Control 15:53–66

    Article  Google Scholar 

  • Huang B, Ding SX, Thornhill N (2005b) Practical solutions to multivariable feedback control performance assessment problem: reduced a priori knowledge of interactor matrices. J Process Control 15:573–583

    Article  Google Scholar 

  • Huang B, Ding SX, Thornhill N (2006) Alternative solutions to multi-variate control performance assessment problems. J Process Control 16:457–471

    Article  Google Scholar 

  • Isaksson AJ (1997) A comparison of some approaches to time-delay estimation. PhD thesis, Royal Institute of Technology, Stockholm, Sweden

    Google Scholar 

  • Isaksson AJ, Horch A, Dumont GA (2000) Event-triggered dead-time estimation—comparison of methods. In: Proc confer control systems, Halifax, Canada, pp 171–178

    Google Scholar 

  • Isermann R (1971) Required accuracy of mathematical models of linear time invariant controlled elements. Automatica 7:333–341

    Article  MATH  Google Scholar 

  • Isermann R (1992) Identifikation dynamischer systeme I+II. Springer, Berlin

    Google Scholar 

  • Johansson R (1993) System modelling and identification. Prentice Hall, New York

    Google Scholar 

  • Julien RH, Foley MW, Cluett WR (2004) Performance assessment using a model predictive control benchmark. J Process Control 14:441–456

    Article  Google Scholar 

  • Kadali R, Huang B (2002a) Estimation of the dynamic matrix and noise model for model predictive control using closed-loop data. Ind Eng Chem Res 41:842–852

    Article  Google Scholar 

  • Kadali R, Huang B (2002b) Controller performance analysis with LQG benchmark obtained under closed loop conditions. ISA Trans 41:521–537

    Article  Google Scholar 

  • Kadali R, Huang B (2004) Multivariable controller performance assessment without interactor matrix—a subspace approach. In: Proc IFAC ADCHEM, Hong Kong, pp 591–596

    Google Scholar 

  • Ko B-S, Edgar TF (1998) Assessment of achievable PI control performance for linear processes with dead time. In: Proc Amer control confer, Philadelphia, USA

    Google Scholar 

  • Kozub DJ (1996) Controller performance monitoring and diagnosis: experiences and challenges. In: Proc chemical process control confer, Lake Tahoe, USA, pp 83–96

    Google Scholar 

  • Kozub DJ (2002) Controller performance monitoring and diagnosis. Industrial perspective. In: Proc IFAC world congress, Barcelona, Spain

    Google Scholar 

  • Liu H, Shah S, Jiang W (2004) On-line outlier detection and data cleaning. Comput Chem Eng 28:1635–1647

    Article  Google Scholar 

  • Ljung L (1999) System identification: theory for the user. Prentice Hall, New York

    Google Scholar 

  • Ljung L, Söderström T (1987) Theory and practice of recursive identification. MIT Press, Cambridge

    Google Scholar 

  • Lynch C, Dumont GA (1996) Control loop performance monitoring. IEEE Trans Control Syst Technol 18:151–192

    Google Scholar 

  • MacGregor JF, Fogal DT (1995) Closed-loop identification: the role of the noise model and prefilters. J Process Control 5:163–171

    Article  Google Scholar 

  • National Instruments Corporation (2004) LabVIEWTM system identification toolkit user manual

    Google Scholar 

  • Nelles O (2001) Nonlinear system identification: from classical approaches to neural networks and fuzzy models. Springer, Berlin

    MATH  Google Scholar 

  • O’Dwyer A (1996) The estimation and compensation of processes with time delays. PhD thesis, Dublin City University, Scotland

    Google Scholar 

  • Perarson RK (2002) Outliers in process modeling and identification. IEEE Trans Control Syst Technol 10:55–63

    Article  Google Scholar 

  • Qin SJ (2006) An overview of subspace identification. Comput Chem Eng 30:1502–1513

    Article  Google Scholar 

  • Qin SJ, Ljung L, Wang J (2002) Subspace identification methods using parsimonious model formulation. In: Proc AIChE, Indianapolis, USA

    Google Scholar 

  • Rousseeuw PJ, Leroy AM (1987) Robust regression and outlier detection. Wiley, New York

    Book  MATH  Google Scholar 

  • Seppala CT, Harris TJ, Bacon DW (2002) Time series methods for dynamic analysis of multiple controlled variables. J Process Control 12:257–276

    Article  Google Scholar 

  • Söderström T, Stoica P (1989) System identification. Prentice Hall, New York

    MATH  Google Scholar 

  • Söderström T, Gustavsson I, Ljung L (1975) Identifiability conditions for linear systems operating in closed-loop. Int J Control 21:243–255

    Article  MATH  Google Scholar 

  • Swanda A, Seborg DE (1999) Controller performance assessment based on setpoint response data. In: Proc Amer control confer, San Diego, USA, pp 3863–3867

    Google Scholar 

  • Thornhill NF, Oettinger M, Fedenczuk MS (1999) Refinery-wide control loop performance assessment. J Process Control 9:109–124

    Article  Google Scholar 

  • Thornhill NF, Choudhury MAAS, Shah SL (2004) The impact of compression on data driven process analyses. J Process Control 14:389–398

    Article  Google Scholar 

  • Van Overschee P, De Moor B (1996) Subspace identification of linear systems: theory, implementation, applications. Kluwer, Dordrecht

    Book  Google Scholar 

  • Van den Hof PMJ, Schrama RJP (1995) Identification and control—closed-loop issues. Automatica 31:1751–1770

    Article  MATH  Google Scholar 

  • Van den Hof PMJ, Heuberger PSC, Bokor J (1995) System identification with generalized orthonormal basis functions. Automatica 31:1821–1834

    Article  MATH  Google Scholar 

  • Wahlberg B (1991) System identification using Laguerre models. IEEE Trans Autom Control 36:551–562

    Article  MathSciNet  MATH  Google Scholar 

  • Wahlberg B (1994) System identification using Kautz models. IEEE Trans Autom Control 39:1276–1282

    Article  MathSciNet  MATH  Google Scholar 

  • Wahlberg B, Hannan EJ (1993) Parametric signal modelling using Laguerre filters. Ann Appl Probab 3:476–496

    Article  MathSciNet  Google Scholar 

  • Wang L, Cluett WR (2000) From plant data to process control. Taylor & Francis, London

    Google Scholar 

  • Wang J, Qin SJ (2002) A new subspace identification approach based on principal component analysis. J Process Control 12:841–855

    Article  MathSciNet  Google Scholar 

  • Zervos CC, Dumont GA (1988) Deterministic adaptive control based on Laguerre series representation. Int J Control 48:2333–2359

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Jelali, M. (2013). Selection of Key Factors and Parameters in Assessment Algorithms. In: Control Performance Management in Industrial Automation. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-4471-4546-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4546-2_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4545-5

  • Online ISBN: 978-1-4471-4546-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics