Skip to main content

Industrial Waste Aggregates

  • Chapter
  • First Online:
Recycled Aggregate in Concrete

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The aggregates typically account for 70–80 % of the concrete volume and play a substantial role in different concrete properties such as workability, strength, dimensional stability and durability. Conventional concrete consists of sand as fine aggregate and gravel, limestone or granite in various sizes and shapes as coarse aggregate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmadi B, Al-Khaja W (2001) Utilization of paper waste sludge in the building construction industry. Resour Conserv Recycl 32(2):105–113

    Article  Google Scholar 

  • Ahmedzade P, Sengoz B (2009) Evaluation of steel slag coarse aggregate in hot mix asphalt concrete. J Hazard Mater 166(1–3):300–305

    Article  Google Scholar 

  • Akcaozoglu S, Atis CD, Akcaozoglu K (2010) An investigation on the use of shredded waste PET bottles as aggregate in lightweight concrete. Waste Manage 32(2):285–290

    Article  Google Scholar 

  • Albano C, Camacho N, Hernandez M, Matheus A, Gutierrez A (2009) Influence of content and particle size of waste pet bottles on concrete behaviour at different w/c ratios. Waste Manage (Oxf) 29(10):2707–2716

    Article  Google Scholar 

  • Al-Jabri KS, Al-Saidy AH, Taha R (2011) Effect of copper slag as a fine aggregate on the properties of cement mortars and concrete. Constr Build Mater 25(2):933–938

    Article  Google Scholar 

  • Al-Manaseer AA, Dalal TR (1997) Concrete containing plastic aggregates. Concr Int 19(8):47–52

    Google Scholar 

  • Almusallam AA, Beshr H, Maslehuddin M, Al-Amoudi OSB (2004) Effect of silica fume on the mechanical properties of low quality coarse aggregate concrete. Cem Concr Compos 26(7):891–900

    Article  Google Scholar 

  • Al-Negheimish AI, Al-Sugair FH, Al-Zaid RZ (1997) Utilization of local steel making slag in concrete. J King Saud Univ Eng Sci 9(1):39–55

    Google Scholar 

  • Al-Otaibi S (2008) Recycling steel mill scale as fine aggregate in cement mortars. Eur J Sci Res 24(3):332–338

    MathSciNet  Google Scholar 

  • Alter H (2005) The composition and environmental hazard of copper slags in the context of the Basel convention. Resour Conserv Recycl 43(4):353–360

    Article  Google Scholar 

  • Altun IA, Yılmaz I (2002) Study on steel furnace slags with high MgO as additive in Portland cement. Cem Concr Res 32(8):1247–1249

    Article  Google Scholar 

  • American Foundrymen’s Society (2004) Foundry sand facts for civil engineers. Report No.: FHWA-IF-04-004 prepared by American Foundrymen’s Society Inc. for Federal Highway Administration Environmental Protection Agency Washington, DC, USA, 80 p

    Google Scholar 

  • Anastasiou F, Papayianni I (2006) Criteria for the use of steel slag aggregates in concrete. In: Konsta-Gdoutos MS (ed) Measuring, monitoring and modeling concrete properties. Springer, The Netherlands, pp 419–426

    Google Scholar 

  • Andrade LB, Rocha JC, Cheriaf M (2007) Evaluation of concrete incorporating bottom ash as a natural aggregates replacement. Waste Manage (Oxf) 27(9):1190–1199

    Article  Google Scholar 

  • Andrade LB, Rocha JC, Cheriaf M (2009) Influence of coal bottom ash as fine aggregate on fresh properties of concrete. Constr Build Mater 23(2):609–614

    Article  Google Scholar 

  • Asokan P, Osmani M, Price ADF (2010) Improvement of the mechanical properties of glass fibre reinforced plastic waste powder filled concrete. Constr Build Mater 24(4):448–460

    Article  Google Scholar 

  • Atzeni C, Massidda L, Sanna U (1996) Use of granulated slag from lead and zinc processing in concrete technology. Cem Concr Res 26(9):1381–1388

    Article  Google Scholar 

  • Ayano T, Sakata K (2000) Durability of concrete with copper slag fine aggregate, Fifth CANMET/ACI international conference on durability of concrete, SP-192. American Concrete Institute, Farmington Hills, pp 141–158

    Google Scholar 

  • Bai Y, Darcy F, Basheer PAM (2005) Strength and drying shrinkage properties of concrete containing furnace bottom ash as fine aggregate. Constr Build Mater 19(9):691–697

    Article  Google Scholar 

  • Batayneh M, Marie I, Ibrahim A (2007) Use of selected waste materials in concrete mixes. Waste Manage (Oxf) 27(12):1870–1876

    Article  Google Scholar 

  • Behnood A (2005) Effects of high temperatures on high-strength concrete incorporating copper slag aggregates. In: Seventh international symposium on high-performance concrete, SP-228-66, Washington, USA, pp 1063–1075

    Google Scholar 

  • Benazzouk A, Mezreb K, Doyen G, Goullieux A, Queneudec M (2003) Effect of rubber aggregates on the physico-mechanical behaviour of cement–rubber composites-influence of the alveolar texture of rubber aggregates. Cem Concr Compos 25(7):711–720

    Article  Google Scholar 

  • Binici H (2007) Effect of crushed ceramic and basaltic pumice as fine aggregates on concrete mortars properties. Constr Build Mater 21(6):1191–1197

    Article  Google Scholar 

  • Biswas AK, Davenport WG (1976) Extractive metallurgy of copper, 1st edn. Pergamon Press, Oxford

    Google Scholar 

  • Brinda D, Baskaran T, Nagan S (2010) Assessment of corrosion and durability characteristics of copper slag admixed concrete. Int J Civil Struct Eng 1(2):192–211

    Google Scholar 

  • Chen M, Zhou M, Wu S (2007) Optimization of blended mortars using steel slag sand. J Wuhan Univ Technol 22(4):741–744

    Article  Google Scholar 

  • Cheriaf M, Rocha JC, Pera J (1999) Pozzolanic properties of pulverized coal combustion bottom ash. Cem Concr Res 29(9):1387–1391

    Article  Google Scholar 

  • Choi YW, Moon DJ, Chung JS, Cho SK (2005) Effects of waste PET bottles aggregate on the properties of concrete. Cem Concr Res 35(4):776–781

    Article  Google Scholar 

  • Choi YW, Moon DJ, Kim YJ, Lachemi M (2009) Characteristics of mortar and concrete containing fine aggregate manufactured from recycled waste polyethylene terephthalate bottles. Constr Build Mater 23(8):2829–2835

    Article  Google Scholar 

  • Collins RJ, Ciesielski SK (1994) Recycling and use of waste materials and by-products in highway construction, NCHRP (National Cooperative Highway Research Program, Synthesis of Highway Practice), Issue No. 199, Transportation Research Board, Washington, USA

    Google Scholar 

  • Collins F, Sanjayan JG (1999) Strength and shrinkage properties of alkali-activated slag concrete containing porous coarse aggregate. Cem Concr Res 29(4):607–610

    Article  Google Scholar 

  • Cyr M, Ludmann C (2006) Low risk meat and bone meal (MBM) bottom ash in mortars as sand replacement. Cem Concr Res 36(3):469–480

    Article  Google Scholar 

  • Das SK, Yudhbir (2006) Geotechnical properties of low calcium and high calcium fly ash. Geotech Geol Eng 24(2):249–263

    Article  Google Scholar 

  • de Brito J, Pereira AS, Correia JR (2005) Mechanical behaviour of non-structural concrete made with recycled ceramic aggregates. Cem Concr Compos 27(4):429–433

    Article  Google Scholar 

  • Emery JJ (1995) Dominican Republic mega project uses hi-tech hot mix, Ontario Hot Mix Producers Association, OHMPA. Asphaltopics 8(2):23–56

    Google Scholar 

  • Escalante-Garcia JI, Magallanes-Rivera RX, Gorokhovsky A (2009) Waste gypsum-blast furnace slag cement in mortars with granulated slag and silica sand as aggregates. Constr Build Mater 23(8):2851–2855

    Article  Google Scholar 

  • Etxeberria M, Pacheco C, Meneses JM, Berridi I (2010) Properties of concrete using metallurgical industrial by-products as aggregates. Constr Build Mater 24(9):1594–1600

    Article  Google Scholar 

  • Faraone N, Tonello G, Furlani E, Maschio S (2009) Steelmaking slag as aggregate for mortars: effects of particle dimension on compression strength. Chemosphere 77(8):1152–1156

    Article  Google Scholar 

  • Fernandes M, Sousa A, Dias A (2004) Environmental impact and emissions trade. Ceramic industry. A case study, Portuguese Association of Ceramic Industry APICER, Coimbra, Portugal

    Google Scholar 

  • Fraj AB, Kismi M, Mounanga P (2010) Valorization of coarse rigid polyurethane foam waste in lightweight aggregate concrete. Constr Build Mater 24(6):1069–1077

    Article  Google Scholar 

  • Frigione M (2010) Recycling of PET bottles as fine aggregate in concrete. Waste Manage (Oxf) 30(6):1101–1106

    Article  Google Scholar 

  • Gallardo RS, Adajar MAQ (2006) Structural performance of concrete with paper sludge as fine aggregates partial replacement enhanced with admixtures. In: Symposium on infrastructure development and the environment 2006, 7–8 Dec 2006, SEAMEO-INNOTECH, University of the Philippines, Diliman, Quezon City, Philippines

    Google Scholar 

  • Ganjian E, Khorami M, Maghsoudi AA (2009) Scrap-tyre-rubber replacement for aggregate and filler in concrete. Constr Build Mater 29(5):1828–1836

    Article  Google Scholar 

  • Ghafoori N, Bucholc J (1996) Investigation of lignite-based bottom ash for structural concrete. J Mater Civ Eng 8(3):128–137

    Article  Google Scholar 

  • Guerra I, Vivar I, Llamas B, Juan A, Moran J (2009) Eco-efficient concretes: the effects of using recycled ceramic material from sanitary installations on the mechanical properties of concrete. Waste Manage (Oxf) 29(2):643–646

    Article  Google Scholar 

  • Guney Y, Sari YD, Yalcin M, Tuncan A, Donmez S (2010) Reuses of waste foundry sand in high-strength concrete. Waste Manage (Oxf) 30(8–9):1705–1713

    Article  Google Scholar 

  • Hannawi K, Kamali-Bernard S, Prince W (2010) Physical and mechanical properties of mortars containing PET and PC waste aggregates, Waste Manage 30(11):2312–2320

    Google Scholar 

  • Hughes ML, Halliburton TA (1973) Use of zinc smelter waste as highway construction material. Highw Res Rec 430:16–25

    Google Scholar 

  • Ilangovana R, Mahendrana N, Nagamani N (2008) Strength and durability properties of concrete containing quarry rock dust as fine aggregate. ARPN J Eng Appl Sci 3(5):20–26

    Google Scholar 

  • Ishimaru K, Mizuguchi H, Hashimoto C, Ueda T, Fujita K, Ohmi M (2005) Properties of concrete using copper slag and second class fly ash as a part of fine aggregate. J Soc Mater Sci 54(8):828–833 (in Japanese)

    Article  Google Scholar 

  • Ismail ZZ, Al-Hashmi EA (2008) Use of waste plastic in concrete mixture as aggregate replacement. Waste Manage (Oxf) 28(11):2041–2047

    Article  Google Scholar 

  • Joshi RC, Lohtia RP (1997) Fly ash in concrete production, properties and uses. Gordon and Breach Science Publishers, India

    Google Scholar 

  • Kan A, Demirboga R (2009) A novel material for lightweight concrete production. Cem Concr Compos 31(7):489–495

    Article  Google Scholar 

  • Khaloo AR, Dehestani M, Rahmatabadi P (2008) Mechanical properties of concrete containing a high volume of tire-rubber particles. Waste Manage (Oxf) 28(12):2472–2482

    Article  Google Scholar 

  • Khanzadi M, Behnood A (2009) Mechanical properties of high-strength concrete in-corporating copper slag as coarse aggregate. Constr Build Mater 23(6):2183–2188

    Article  Google Scholar 

  • Kim HK, Lee HK (2011) Use of power plant bottom ash as fine and coarse aggregates in high-strength concrete. Constr Build Mater 25(2):1115–1122

    Article  Google Scholar 

  • Kim SB, Yi NH, Kim HY, Kim JHJ, Song YC (2010) Material and structural performance evaluation of recycled PET fibre reinforced concrete. Cem Concr Comp 32(3):232–240

    Google Scholar 

  • Kinuthia J, Snelson D, Gailius A (2009) Sustainable medium-strength concrete (CS-concrete) from colliery spoil in South Wales UK. J Civil Eng Manage 15(2):149–157

    Article  Google Scholar 

  • Kou SC, Poon CS (2009) Properties of concrete prepared with crushed fine stone, furnace bottom ash and fine recycled aggregate as fine aggregates. Constr Build Mater 23(8):2877–2886

    Article  Google Scholar 

  • Kou SC, Lee G, Poon CS, Lai WL (2009) Properties of lightweight aggregate concrete prepared with PVC granules derived from scraped PVC pipes. Waste Manage (Oxf) 29(2):621–628

    Article  Google Scholar 

  • Kuo WY, Huang JS, Tan TE (2007) Organo-modified reservoir sludge as fine aggregates in cement mortars. Constr Build Mater 21(3):609–615

    Article  Google Scholar 

  • Kurama H, Topcu IB, Karakurt C (2009) Properties of the autoclaved aerated concrete produced from coal bottom ash. J Mater Process Technol 209(2):767–773

    Article  Google Scholar 

  • Laukaitis A, Zurauskas R, Keriene J (2005) The effect of foam polystyrene granules on cement composite properties. Cem Concr Compos 27(1):41–47

    Article  Google Scholar 

  • Lee HK, Kim HK, Hwang EA (2010) Utilization of power plant bottom ash as aggregates in fibre-reinforced cellular concrete. Waste Manage (Oxf) 30(2):274–284

    Article  Google Scholar 

  • Leshchinsky A (2004) Slag sand in ready-mixed concrete. Concrete 38(3):38–39

    Google Scholar 

  • Lovell CW, Te-Chih K (1992) Corrosivity of Indian bottom ash, Transportation Research Record No. 1345, Transportation Research Board, Washington, DC, USA, 52 p

    Google Scholar 

  • Lun Y, Zhou M, Cai X, Xu F (2008) Methods for improving volume stability of steel slag as fine aggregate. J Wuhan Univ Technol 23(5):737–742

    Article  Google Scholar 

  • Luxan MP, Sotolongo R, Dorrego F, Herreroh E (2000) Characteristics of the slags produced in the fusion of scrap steel by electric arc furnace. Cem Concr Res 34(4):517–519

    Article  Google Scholar 

  • Mahieux PY, Aubert JE, Escadeillas G (2009) Utilization of weathered basic oxygen furnace slag in the production of hydraulic road binders. Constr Build Mater 23(2):742–747

    Article  Google Scholar 

  • Majizadeh K, Bokowski G, El-Mitiny R (1979) Material characteristics of power plant bottom ashes and their performance in bituminous mixtures: a laboratory investigation, In: 5th international ash utilization symposium. Report No. METC/SP-79/10, Part 2, US Department of Energy, Morgantown, West Virginia

    Google Scholar 

  • Manso JM, Gonzalez JJ, Polanco JA (2004) Electric arc furnace slag in concrete. J Mater Civ Eng 16(6):639–645

    Article  Google Scholar 

  • Manso JM, Polanco JA, Losanez M, Gonzalez JJ (2006) Durability of concrete made with EAF slag as aggregate. Cem Concr Compos 28(6):528–534

    Article  Google Scholar 

  • Marzouk OY, Dheilly RM, Queneudec M (2007) Valorisation of post-consumer waste plastic in cementitious concrete composites. Waste Manage (Oxf) 27(2):310–318

    Article  Google Scholar 

  • Maslehuddin M, Al Mana AI, Samim M, Saricimen H (1989) Effect of sand replacement on the early-age strength gain and corrosion-resisting characteristics of fly ash concrete. ACI Mater J 86(1):58–62

    Google Scholar 

  • Maslehuddin M, Sharif AM, Shameem M, Ibrahim M, Barry MS (2003) Comparison of properties of steel slag and crushed limestone aggregate concretes. Constr Build Mater 17(2):105–112

    Article  Google Scholar 

  • Metwally MEA, Seleem MH, Balaha MM, Abd El-Rahman H (2005) Utilizing of slag produced from recycling of spent lead-batteries as concrete aggregate. Alex Eng J 44(6):883–892

    Google Scholar 

  • Monshi A, Asgarani MK (1999) Producing Portland cement from iron and steel slags and limestone. Cem Concr Res 29(9):1373–1377

    Article  Google Scholar 

  • Morrison C, Richardson D (2004) Re-use of zinc smelting furnace slag in concrete. Eng Sustain 157(4):213–218

    Article  Google Scholar 

  • Morrison C, Hooper R, Lardner K (2003) The use of ferro-silicate slag from ISF zinc production as a sand replacement in concrete. Cem Concr Res 33(12):2085–2089

    Article  Google Scholar 

  • Mounanga P, Gbongbon W, Poullain P, Turcry P (2008) Proportioning and characterization of lightweight concrete mixtures made with rigid polyurethane foam wastes. Cem Concr Compos 30(9):806–814

    Article  Google Scholar 

  • Moura W, Masuero A, Dal Molin D, Vilela A (1999) Concrete performance with admixtures of electrical steel slag and copper concerning mechanical properties. In: 2nd CANMET/ACI international conference on high-performance concrete, SP-186 American Concrete Institute, Farmington Hills, MI, pp 81–100

    Google Scholar 

  • Naik TR, Singh SS, Huber CO, Brodersen BS (1996) Use of post-consumer waste plastics in cement-based composites. Cem Concr Res 26(10):1489–1492

    Article  Google Scholar 

  • National Slag Association (2011) NSA product information: steel slag base and subbase aggregates, PI 207. National Slag Association, 25 Stevens Avenue, Building A, West Lawn, PA 19609. (http://www.nationalslag.org/archive/sf_prod_info_sheet.pdf. Accessed January 2011)

  • Neville AM (1995) Properties of concrete, 4th edn. Longman, London

    Google Scholar 

  • Ozkan O, Yuksel I, Muratoglu O (2007) Strength properties of concrete incorporating coal bottom ash and granulated blast furnace slag. Waste Manage 27(2):161–167

    Article  Google Scholar 

  • Öztürk T, Bayrakl M (2005) The possibilities of using tobacco wastes in producing lightweight concrete. Agricultural Engineering International: the CIGR E-Journal, Vol. VII, Manuscript BC 05 006

    Google Scholar 

  • Pacheco-Torgal F, Jalali S (2010) Reusing ceramic wastes in concrete. Constr Build Mater 24(5):832–838

    Article  Google Scholar 

  • Panyakapo P, Panyakapo M (2008) Reuse of thermosetting plastic waste for lightweight concrete. Waste Manage (Oxf) 28(9):1581–1588

    Article  Google Scholar 

  • Papadakis VG (1999) Effect of fly ash on Portland cement systems Part I. Low-calcium fly ash. Cem Concr Res 29(11):1727–1736

    Article  Google Scholar 

  • Papadakis VG (2000) Effect of fly ash on Portland cement systems Part II. High-calcium fly ash. Cem Concr Res 30(10):1647–1654

    Article  Google Scholar 

  • Papayianni I, Anastasiou E (2010) Production of high-strength concrete using high volume of industrial by-products. Constr Build Mater 24(8):1412–1417

    Article  Google Scholar 

  • Park SB, Jang YI, Lee J, Lee BJ (2009) An experimental study on the hazard assessment and mechanical properties of porous concrete utilizing coal bottom ash coarse aggregate in Korea. J Hazard Mater 166(1):348–355

    Article  Google Scholar 

  • Pellegrino C, Gaddo V (2009) Mechanical and durability characteristics of concrete containing EAF slag as aggregate. Cem Concr Compos 31(9):663–671

    Article  Google Scholar 

  • Penpolcharoen M (2005) Utilization of secondary lead slag as construction material. Cem Concr Res 35(6):1050–1055

    Article  Google Scholar 

  • Pereira DA, de Aguiar D, Castro F, Almeida MF, Labrincha JA (2000) Mechanical behaviour of Portland cement mortars with incorporation of Al-containing salt slags. Cem Concr Res 30(7):1131–1138

    Article  Google Scholar 

  • Piercea CE, Blackwell MC (2003) Potential of scrap tire rubber as lightweight aggregate in flowable fill. Waste Manage (Oxf) 23(3):197–208

    Article  Google Scholar 

  • Pofale AD, Deo SV (2010) Comparative long term study of concrete mix design procedure for fine aggregate replacement with fly ash by minimum voids method and maximum density method. KSCE J Civil Eng 14(5):759–764

    Article  Google Scholar 

  • Proctor DM, Fehling KA, Shay EC, Wittenborn JL, Green JJ, Avent C, Bigham RD, Connolly M, Lee B, Shepker TO, Zak MA (2000) Physical and chemical characteristics of blast furnace, basic oxygen furnace, and electric arc furnace steel industry slags. Environ Sci Technol 34(8):1576–1582

    Article  Google Scholar 

  • Qasrawi H, Shalabi F, Asi I (2009) Use of low CaO unprocessed steel slag in concrete as fine aggregate. Constr Build Mater 23(2):1118–1125

    Article  Google Scholar 

  • Qian G, Sun DD, Tay JH, Lai Z, Xu G (2002) Autoclave properties of kirschsteinite-based steel slag. Cem Concr Res 32(9):1377–1382

    Article  Google Scholar 

  • Rajamane NP, Annie Peter J, Ambily PS (2007) Prediction of compressive strength of concrete with fly ash as sand replacement material. Cem Concr Compos 29(3):218–223

    Article  Google Scholar 

  • Ravina D (1997) Properties of fresh concrete incorporating a high volume of fly ash as partial fine sand replacement. Mater Struct 30(8):473–479

    Article  Google Scholar 

  • Reddy AS, Pradhan RK, Chandra S (2006) Utilization of basic oxygen furnace (BOF) slag in the production of a hydraulic cement binder. Int J Miner Process 79(2):98–105

    Article  Google Scholar 

  • Remadnia A, Dheilly RM, Laidoudi B, Quéneudec M (2009) Use of animal proteins as foaming agent in cementitious concrete composites manufactured with recycled PET aggregates. Constr Build Mater 23(10):3118–3123

    Article  Google Scholar 

  • Rodriguez A, Manso JM, Aragon A, Gonzalez JJ (2009) Strength and workability of masonry mortars manufactured with ladle furnace slag. Resour Conserv Recycl 53(11):645–651

    Article  Google Scholar 

  • Rogbeck J, Knutz A (1999) Coal bottom ash as light fill material in construction. Waste Manage (Oxf) 16(1):125–128

    Article  Google Scholar 

  • Rojas MF, Sanchez de Rojas MI (2004) Chemical assessment of the electric arc furnace slag as construction material: expansive compounds. Cem Concr Res 34(10):1881–1888

    Article  Google Scholar 

  • Rubber Manufacturer’s Association (2006) Scrap tire markets in the United States, 2005 edn. Nov 2006, Rubber Manufacturer`s Association, 1400 K Street, NW, Washington DC 20005 (http://www.rma.org/scrap_tires. Accessed May 2011

  • Senthamarai RM, Devadas MP (2005) Concrete with ceramic waste aggregate. Cem Concr Compos 27(9–10):910–913

    Article  Google Scholar 

  • Setien J, Hernandez D, Gonzalez JJ (2009) Characterization of ladle furnace basic slag for use as a construction material. Constr Build Mater 23(5):1788–1794

    Article  Google Scholar 

  • Shen D-H, Wu C-M, Du J-C (2009) Laboratory investigation of basic oxygen furnace slag for substitution of aggregate in porous asphalt mixture. Constr Build Mater 23(1):453–461

    Article  Google Scholar 

  • Shi C, Qian J (2000) High performance cementing materials from industrial slag—a review. Resour Conserv Recycl 29(2):195–207

    Article  Google Scholar 

  • Shi C, Meyer C, Behnood A (2008) Utilization of copper slag in cement and concrete. Resour Conserv Recycl 52(11):1115–1120

    Article  Google Scholar 

  • Siddique R (2003a) Effect of fine aggregate replacement with Class F fly ash on the mechanical properties of concrete. Cem Concr Res 33(4):539–547

    Article  Google Scholar 

  • Siddique R (2003b) Effect of fine aggregate replacement with Class F fly ash on the abrasion resistance of concrete. Cem Concr Res 33(11):1877–1881

    Article  Google Scholar 

  • Siddique R, Khatib J, Kaur I (2008) Use of recycled plastic in concrete: a review. Waste Manage 28(10):1835–1852

    Article  Google Scholar 

  • Silva DA, Betioli AM, Gleize PJP, Roman HR, Gomez LA, Ribeiro JLD (2005) Degradation of recycled PET fibres in Portland cement-based materials. Cem Concr Res 35(9):1741–1746

    Article  Google Scholar 

  • Snelson DG, Kinuthia JM, Davies PA, Chang S-R (2009) Sustainable construction: composite use of tyres and ash in concrete. Waste Manage (Oxf) 29(1):360–367

    Article  Google Scholar 

  • Sorlini S, Collivignarelli C, Plizzari G, Foglie MD (2004) Reuse of Waelz slag as recycled aggregate for structural concrete. In: International RILEM conference on the use of recycled materials in building and structures, Barcelona, pp 1086–1094

    Google Scholar 

  • Sukontasukkul P, Chaikaew C (2006) Properties of concrete pedestrian block mixed with crumb rubber. Constr Build Mater 20(7):450–457

    Article  Google Scholar 

  • Suzuki M, Meddah MS, Sato R (2009) Use of porous ceramic waste aggregates for internal curing of high-performance concrete. Cem Concr Res 39(5):373–381

    Article  Google Scholar 

  • Taeb A, Faghihi S (2002) Utilization of copper slag in the cement industry. ZKG Int 55(4):98–100

    Google Scholar 

  • Topcu IB, Canbaz M (2007) Utilization of crushed tile as aggregate in concrete. Iran J Sci Technol Trans B Eng 31(5):561–565

    Google Scholar 

  • Torkittikul P, Chaipanich A (2010) Utilization of ceramic waste as fine aggregate within Portland cement and fly ash concretes. Cem Concr Compos 32(6):440–449

    Article  Google Scholar 

  • Tossavainen M, Engstrom F, Yang Q, Menad N, Larsson ML, Bjorkman B (2007) Characteristics of steel slag under different cooling conditions. Waste Manage (Oxf) 27(7):1335–1344

    Article  Google Scholar 

  • Wang G, Wang Y, Gao Z (2010) Use of steel slag as a granular material: volume expansion prediction and usability criteria. J Hazard Mater 184(1–3):555–560

    Article  Google Scholar 

  • Wu W, Zhang W, Ma G (2009) Optimum content of copper slag as a fine aggregate in high strength concrete. Mater Des 31(6):2878–2883

    Article  Google Scholar 

  • Xue Y, Wu S, Hou H, Zha J (2006) Experimental investigation of basic oxygen furnace slag used as aggregate in asphalt mixture. J Hazard Mater B 138(2):261–268

    Article  Google Scholar 

  • Yellishetty M, Karpe V, Reddy EH, Subhash KN, Ranjith PG (2008) Reuse of iron ore mineral waste in civil engineering constructions: A case study. Resour Conserv Recycl 52(11):1283–1289

    Article  Google Scholar 

  • Yesilata B, Isıker Y, Turgut P (2009) Thermal insulation enhancement in concretes by adding waste PET and rubber pieces. Constr Build Mater 23(5):1878–1882

    Article  Google Scholar 

  • Yüksel I, Bilir T (2007) Usage of industrial by-products to produce plain concrete elements. Constr Build Mater 21(3):686–694

    Article  Google Scholar 

  • Yüksel I, Siddique R, Özkan O (2011) Influence of high temperature on the properties of concretes made with industrial by-products as fine aggregate replacement. Constr Build Mater 25(2):967–972

    Article  Google Scholar 

  • Zelic J (2005) Properties of concrete pavements prepared with ferrochromium slag as concrete aggregate. Cem Concr Res 35(12):2340–2349

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge de Brito .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

de Brito, J., Saikia, N. (2013). Industrial Waste Aggregates. In: Recycled Aggregate in Concrete. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-4540-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4540-0_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4539-4

  • Online ISBN: 978-1-4471-4540-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics