Gradient Art: Creation and Vectorization

  • Pascal Barla
  • Adrien Bousseau
Part of the Computational Imaging and Vision book series (CIVI, volume 42)


There are two different categories of methods for producing vector gradients. One is mainly interested in converting existing photographs into dense vector representations. By vector it is meant that one can zoom infinitely inside images, and that control values do not have to lie on a grid but must represent subtle color gradients found in input images. The other category is tailored to the creation of images from scratch, using a sparse set of vector primitives. In this case, we still have the infinite zoom property, but also an advanced model of how space should be filled in-between primitives, since there is no input photograph to rely on. These two categories are actually extreme cases, and they seem to exclude each other. A dense representation is difficult to manipulate, especially when one wants to modify topology; a sparse representation is hardly adapted to photo vectorization, especially in the presence of texture. Very few methods lie in the middle, and the ones that do require user assistance. The challenge is worth the effort though: it would make converting an image into vector primitives easily amenable to stylization.


Constant Color Diffusion Curve Color Gradient Vector Graphic Bitmap Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Barrett, W.A., Cheney, A.S.: Object-based image editing. ACM Trans. Graph. 21(3), 777–784 (2002). doi: 10.1145/566654.566651 CrossRefGoogle Scholar
  2. 2.
    Baxter, W.V., Scheib, V., Lin, M.C.: dAb: interactive haptic painting with 3D virtual brushes. In: SIGGRAPH, pp. 461–468 (2001) Google Scholar
  3. 3.
    Bezerra, H., Eisemann, E., DeCarlo, D., Thollot, J.: Diffusion constraints for vector graphics. In: Proceedings of the International Symposium on Non-Photorealistic Animation and Rendering (NPAR), pp. 35–42 (2010). doi: 10.1145/1809939.1809944 Google Scholar
  4. 4.
    Bowers, J.C., Leahey, J., Wang, R.: A ray tracing approach to diffusion curves. Comput. Graph. Forum 30(4), 1345–1352 (2011). doi: 10.1111/j.1467-8659.2011.01994.x CrossRefGoogle Scholar
  5. 5.
    Briggs, W.L., Henson, V.E., McCormick, S.F.: A Multigrid Tutorial. SIAM, Philadelphia (2000) CrossRefMATHGoogle Scholar
  6. 6.
    Demaret, L., Dyn, N., Iske, A.: Image compression by linear splines over adaptive triangulations. Signal Process. 86(7), 1604–1616 (2006). doi: 10.1016/j.sigpro.2005.09.003 CrossRefMATHGoogle Scholar
  7. 7.
    Elder, J.H.: Are edges incomplete? Int. J. Comput. Vis. 34(2–3), 97–122 (1999). doi: 10.1023/A:1008183703117 CrossRefGoogle Scholar
  8. 8.
    Elder, J.H., Goldberg, R.M.: Image editing in the contour domain. IEEE Trans. Pattern Anal. Mach. Intell. 23(3), 291–296 (2001). doi: 10.1109/34.910881 CrossRefGoogle Scholar
  9. 9.
    Farin, G., Hansford, D.: Discrete Coons patches. Comput. Aided Geom. Des. 16, 691–700 (1999) MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Finch, M., Snyder, J., Hoppe, H.: Freeform vector graphics with controlled thin-plate splines. ACM Trans. Graph. 30(6), 166 (2011). doi: 10.1145/2070781.2024200 CrossRefGoogle Scholar
  11. 11.
    Hnaidi, H., Guérin, E., Akkouche, S., Peytavie, A., Galin, E.: Feature based terrain generation using diffusion equation. Comput. Graph. Forum 29(7), 2179–2186 (2010) CrossRefGoogle Scholar
  12. 12.
    Jeschke, S., Cline, D., Wonka, P.: A GPU Laplacian solver for diffusion curves and Poisson image editing. ACM Trans. Graph. 28, 116 (2009). doi: 10.1145/1618452.1618462 Google Scholar
  13. 13.
    Jeschke, S., Cline, D., Wonka, P.: Estimating color and texture parameters for vector graphics. Comput. Graph. Forum 30(2), 523–532 (2011) CrossRefGoogle Scholar
  14. 14.
    Johnston, S.F.: Lumo: illumination for cel animation. In: Proceedings of the International Symposium on Non-photorealistic Animation and Rendering (NPAR) (2002). doi: 10.1145/508530.508538 Google Scholar
  15. 15.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988) CrossRefGoogle Scholar
  16. 16.
    Lai, Y.K., Hu, S.M., Martin, R.R.: Automatic and topology-preserving gradient mesh generation for image vectorization. ACM Trans. Graph. 28(3), 85 (2009). doi: 10.1145/1531326.1531391 CrossRefGoogle Scholar
  17. 17.
    Lecot, G., Lévy, B.: ARDECO: Automatic Region DEtection and Conversion. In: 17th Eurographics Symposium on Rendering—EGSR’06, pp. 349–360 (2006) Google Scholar
  18. 18.
    McCann, J., Pollard, N.S.: Real-time gradient-domain painting. ACM Trans. Graph. 27(3), 93 (2008) CrossRefGoogle Scholar
  19. 19.
    Orzan, A., Bousseau, A., Winnemöller, H., Barla, P., Thollot, J., Salesin, D.: Diffusion curves: a vector representation for smooth-shaded images. ACM Trans. Graph. 27, 92 (2008). doi: 10.1145/1360612.1360691 CrossRefGoogle Scholar
  20. 20.
    Pang, W.M., Qin, J., Cohen, M., Heng, P.A., Choi, K.S.: Fast rendering of diffusion curves with triangles. IEEE Comput. Graph. Appl. 32(4), 68–78 (2011). doi: 10.1109/MCG.2011.86 CrossRefGoogle Scholar
  21. 21.
    Price, B.L., Barrett, W.A.: Object-based vectorization for interactive image editing. Vis. Comput. 22(9–11), 661–670 (2006). doi: 10.1007/s00371-006-0051-1 CrossRefGoogle Scholar
  22. 22.
    Sun, J., Liang, L., Wen, F., Shum, H.Y.: Image vectorization using optimized gradient meshes. ACM Trans. Graph. 26(3), 11 (2007). doi: 10.1145/1276377.1276391 CrossRefGoogle Scholar
  23. 23.
    Sun, Q., Fu, C.W., He, Y.: An interactive multi-touch sketching interface for diffusion curves. In: Proceedings of the 2011 Annual Conference on Human Factors in Computing Systems (CHI), pp. 1611–1614 (2011). doi: 10.1145/1978942.1979176 Google Scholar
  24. 24.
    Takayama, K., Sorkine, O., Nealen, A., Igarashi, T.: Volumetric modeling with diffusion surfaces. ACM Trans. Graph. 29, 180 (2010). doi: 10.1145/1882261.1866202 CrossRefGoogle Scholar
  25. 25.
    Xia, T., Liao, B., Yu, Y.: Patch-based image vectorization with automatic curvilinear feature alignment. ACM Trans. Graph. 28(5), 115 (2009). doi: 10.1145/1618452.1618461 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Inria BordeauxTalence CedexFrance
  2. 2.Inria Sophia AntipolisSophia Antipolis CedexFrance

Personalised recommendations