Skip to main content

Compliant Mechanisms

  • Conference paper

Abstract

Compliant mechanisms exploit bending of flexible members to achieve their motion. Advantages of compliant mechanisms include high precision motion, low weight, low friction, and compactness, to name a few. Challenges of compliant mechanisms include limited rotation, dependence on material properties, nonlinear motion, and challenging design. Compliant mechanism design methods include finite element analysis, topology optimization, and pseudo-rigid-body model methods. There are many areas of active research in compliant mechanisms, and three examples are described in this chapter: compliant microelectromechanical systems (MEMS), biomedical compliant mechanisms, and lamina emergent mechanisms.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This section is based on “Compliant Mechanisms” by L.L. Howell in Encyclopedia of Nanotechnology, Editor: B. Bhusham, © Springer, 2012, used with permission.

  2. 2.

    This section is based on Compliant Mechanisms, by L.L. Howell in Encyclopedia of Nanotechnology, Editor: B. Bhusham, Springer, 2012, used with permission.

  3. 3.

    This section is based on “Spinal Implant Development, Modeling, and Testing to Achieve Customizable and Nonlinear Stiffness” by E. Dodgen, E. Stratton, A.E. Bowden, L.L. Howell, in Journal of Medical Devices, vol. 6, doi:10.1115/1.4006543, 2012. Used with kind permission © ASME.

  4. 4.

    This section is based on “Lamina Emergent Mechanisms and Their Basic Elements,” by J.O. Jacobsen, B.G. Winder, L.L. Howell, and S.P. Magleby, Journal of Mechanisms and Robotics, vol. 2, No. 1, 011003-1 to 011003-9, 2010. Used with kind permission © ASME.

  5. 5.

    This section is based on “Identifying Potential Applications for Lamina Emergent Mechanisms Using Technology Push Product Development,” by N.B. Albrechtsen, S.P. Magleby, and L.L. Howell, in Proceedings of the ASME International Design Engineering Technical Conferences, Montreal, Quebec, Aug. 15–18, 2010, DETC2010-28531, used with permission. Used with kind permission © ASME.

References

  1. Andersen, C., Magleby, S., Howell, L.: Principles and preliminary concepts for compliant mechanically reactive armor. In: ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots (2009)

    Google Scholar 

  2. Awtar, S., Sen, S.: A generalized constraint model for two-dimensional beam flexures: nonlinear load-displacement formulation. J. Mech. Des. 132(8)

    Google Scholar 

  3. Cannon, J.R., Howell, L.L.: A compliant contact-aided revolute joint. Mech. Mach. Theory 40(11), 1273–1293 (2005)

    Article  MATH  Google Scholar 

  4. Chen, G., Aten, Q.T., Zirbel, S., et al.: A tristable mechanism configuration employing orthogonal compliant mechanisms. J. Mech. Robot. 2(1) (2010)

    Google Scholar 

  5. Chen, G., Gou, Y., Zhang, A.: Synthesis of compliant multistable mechanisms through use of a single bistable mechanism. J. Mech. Des. 133(8) (2011)

    Google Scholar 

  6. Chen, S.-C., Culpepper, M.L.: Design of a six-axis micro-scale nanopositioner-hexflex. Precis. Eng. 30(3), 314–324 (2006)

    Article  Google Scholar 

  7. Cronin, J.A., Frecker, M.I., Mathew, A.S.: Design of a compliant endoscopic suturing instrument. J. Med. Dev. 2(2) (2008)

    Google Scholar 

  8. Dai, J.S., Jones, J.R.: Matrix representation of topological changes in metamorphic mechanism. J. Mech. Des. 127(4), 837–840 (2005)

    Article  Google Scholar 

  9. Dai, J.S., Jones, J.R.: Mobility in metamorphic mechanisms of foldable/erectable kinds. J. Mech. Des. 121(3), 375–382 (1999)

    Article  Google Scholar 

  10. Frecker, M., Ananthasuresh, G., Nishiwaki, S., Kikuchi, N., Kota, S.: Topological synthesis of compliant mechanisms using multi-criteria optimization. J. Mech. Des. 11(9), 238–245 (1997)

    Article  Google Scholar 

  11. Frecker, M., Canfield, S.: Optimal design and experimental validation of compliant mechanical amplifiers for piezoceramic stack actuators. J. Intell. Mater. Syst. Struct. 11(5), 360–369 (2000)

    Google Scholar 

  12. Greenberg, H.C., Gong, M.L., Howell, L.L., Magleby, S.P.: Origami and compliant mechanisms. J. Mech. Sci. 2, 217–225 (2011)

    Article  Google Scholar 

  13. Halverson, P.A., Howell, L.L., Magleby, S.P.: Tension-based multi-stable compliant rolling-contact elements. Mech. Mach. Theory 45(2), 147–156 (2010)

    Article  MATH  Google Scholar 

  14. Hoetmer, K., Woo, G., Kim, C., Herder, J.: Negative stiffness building blocks for statically balanced compliant mechanisms: design and testing. J. Mech. Robot. 2(4) (2010)

    Google Scholar 

  15. Holst, G.L., Teichert, G.H., Jensen, B.D.: Modeling and experiments of buckling modes and deflection of fixed-guided beams in compliant mechanisms. J. Mech. Des. 133(5) (2011)

    Google Scholar 

  16. Hopkins, J.B., Culpepper, M.L.: Synthesis of multi-degree of freedom, parallel flexure system concepts via freedom and constraint topology (FACT)—part I: Principles. Precis. Eng. 34(2), 259–270 (2010)

    Article  Google Scholar 

  17. Hopkins, J.B., Culpepper, M.L.: Synthesis of multi-degree of freedom, parallel flexure system concepts via freedom and constraint topology (FACT)—part II: Practice. Precis. Eng. 34(2), 271–278 (2010)

    Article  Google Scholar 

  18. Howell, L., DiBiasio, C., Cullinan, M., Panas, R., Culpepper, M.: A pseudo-rigid-body model for large deflections of fixed-clamped carbon nanotubes. J. Mech. Robot. 2, 034501 (2010)

    Article  Google Scholar 

  19. Howell, L., Midha, A.: Parametric deflection approximations for end-loaded, large-deflection beams in compliant mechanisms. J. Mech. Des. 117, 156–165 (1995)

    Article  Google Scholar 

  20. Howell, L., Midha, A.: A method for the design of compliant mechanisms with small-length flexural pivots. J. Mech. Des. 116, 280–290 (1994)

    Article  Google Scholar 

  21. Howell, L.L.: Compliant Mechanisms. Wiley, New York (2001)

    Google Scholar 

  22. Howell, L.L., McLain, T.W., Baker, M.S., Lott, C.D.: MEMS/NEMS Handbook, Techniques and Applications. Springer, New York (2006), pp. 187–200

    Google Scholar 

  23. Hull, P., Canfield, S.: Optimal synthesis of compliant mechanisms using subdivision and commercial FEA. J. Mech. Des. 128(2), 337–348 (2006)

    Article  Google Scholar 

  24. Jacobsen, J.O., Chen, G., Howell, L.L., Magleby, S.P.: Lamina emergent torsional (LET) joint. Mech. Mach. Theory 44(11), 2098–2109 (2009)

    Article  MATH  Google Scholar 

  25. Jacobsen, J.O., Howell, L.L., Magleby, S.P.: Lamina emergent mechanisms and their basic elements. J. Mech. Robot. 2(1), 011003 (2010)

    Article  Google Scholar 

  26. Jacobsen, J.O., Howell, L.L., Magleby, S.P.: Fundamental components for lamina emergent mechanisms. In: Proceedings of the 2007 ASME International Mechanical Engineering Congress and Exposition (2007)

    Google Scholar 

  27. Jain, C., Saxena, A.: An improved material-mask overlay strategy for topology optimization of structures and compliant mechanisms. J. Mech. Des. 132(6) (2010)

    Google Scholar 

  28. Jensen, B.D., Howell, L.L.: Identification of compliant pseudo-rigid-body four-link mechanism configurations resulting in bistable behavior. J. Mech. Des. 125(4), 701–708 (2003)

    Article  Google Scholar 

  29. Jensen, B.D., Howell, L.L., Salmon, L.G.: Design of two-link, in-plane, bistable compliant micro-mechanisms. J. Mech. Des. 121, 416–423 (1999)

    Article  Google Scholar 

  30. Krishnan, G., Kim, C., Kota, S.: An intrinsic geometric framework for the building block synthesis of single point compliant mechanisms. J. Mech. Robot. 3(1) (2011)

    Google Scholar 

  31. Lobontiu, N.: Compliant Mechanisms: Design of Flexure Hinges. CRC Press, Boca Raton (2003)

    Google Scholar 

  32. Lusk, C.P., Howell, L.L.: Components, building blocks, and demonstrations of spherical mechanisms in microelectromechanical systems. J. Mech. Des. 130(3), 034503 (2008)

    Article  Google Scholar 

  33. Lusk, C.P., Howell, L.L.: Spherical bistable micromechanism. J. Mech. Des. 130, 1–6 (2008)

    Google Scholar 

  34. Mankame, N.D., Ananthasuresh, G.K.: Synthesis of contact-aided compliant mechanisms for non-smooth path generation. Int. J. Numer. Methods Eng. 69(12), 2564–2605 (2007)

    Article  MATH  Google Scholar 

  35. Mehta, V., Frecker, M., Lesieutre, G.A.: Stress relief in contact-aided compliant cellular mechanisms. J. Mech. Des. 131(9), 091009 (2009)

    Article  Google Scholar 

  36. Nai, T.Y., Herder, J.L., Tuijthof, G.J.M.: Steerable mechanical joint for high load transmission in minimally invasive instruments. J. Med. Dev. Trans. ASME 5(3) (2011)

    Google Scholar 

  37. Natarajan, R.N., Andersson, G.B.J.: The influence of lumbar disc height and cross-sectional area on the mechanical response of the disc to physiologic loading. SPINE 24(18), 1873–1881 (1999)

    Article  Google Scholar 

  38. Nelson, P., Malecha, R., Chilenskas, A.: Variable pressure thermal insulating jacket (1994)

    Google Scholar 

  39. Panjabi, M.M., Goel, V., Oxland, T., Takata, K., Duranceau, J., Krag, M., Price, M.: Human lumbar vertebrae quantitative three-dimensional anatomy. SPINE 17(3), 299–306 (1992)

    Article  Google Scholar 

  40. Pei, X., Yu, J., Zong, G., Bi, S., Su, H.: The modeling of cartwheel flexural hinges. Mech. Mach. Theory 44, 1900–1909 (2009)

    Article  MATH  Google Scholar 

  41. Qiu, J., Lang, J.H., Slocum, A.H.: A curved-beam bistable mechanism. J. Microelectromech. Syst. 13(2), 137–146 (2004)

    Article  Google Scholar 

  42. Radaelli, G., Gallego, J.A., Herder, J.L.: An energy approach to static balancing of systems with torsion stiffness. J. Mech. Des. 133(9) (2011)

    Google Scholar 

  43. Saxena, A., Ananthasuresh, G.K.: On an optimal property of compliant topologies. Struct. Optim. 19(1), 3649 (2000)

    Google Scholar 

  44. Schnake, K.J., Putzier, M., Haas, N.P., Kandziora, F.: Mechanical concepts for disc regeneration. Eur. Spine J. 15(Suppl. 3), 354–360 (2006)

    Article  Google Scholar 

  45. Sigmund, O.: On the design of compliant mechanisms using topology optimization. Mech. Based Des. Struct. Mach. 25(4), 493–524 (1997)

    Google Scholar 

  46. Smith, S.: Flexures: Elements of Elastic Mechanisms. Taylor, Francis, London (2000)

    Google Scholar 

  47. Stratton, E., Howell, L.L., Bowden, A.E.: Force-displacement model of the flexsure spinal implant (2010)

    Google Scholar 

  48. Sundaram, M.M., Limaye, P., Ananthasuresh, G.K.: Design of conjugate, conjoined shapes and tilings using topology optimization. Struct. Multidiscip. Optim. 45(1), 65–81 (2012)

    Article  MathSciNet  Google Scholar 

  49. Trease, B.P., Moon, Y.-M., Kota, S.: Design of large-displacement compliant joints. J. Mech. Des. 127, 788–798 (2005)

    Article  Google Scholar 

  50. Wang, M.Y.: A kinetoelastic formulation of compliant mechanism optimization. J. Mech. Robot. 1(2) (2009)

    Google Scholar 

  51. Wang, W., Yu, Y.: New approach to the dynamic modeling of compliant mechanisms. J. Mech. Robot. 2(2) (2010)

    Google Scholar 

  52. Wuxiang, Z., Xilun, D.: A method for designing metamorphic mechanisms and its application (2009)

    Google Scholar 

  53. Yu, Y.Q., Howell, L.L., Lusk, C.P.: Dynamic modeling of compliant mechanisms based on the pseudo-rigid-body model. J. Mech. Des. 127(4), 760–765 (2005)

    Article  Google Scholar 

  54. Zhao, H., Bi, S., Yu, J.: A novel compliant linear-motion mechanism based on parasitic motion compensation. Mech. Mach. Theory 50, 15–28 (2012)

    Article  Google Scholar 

  55. Zhao, H., Bi, S., Yu, J.: Nonlinear deformation behavior of a beam-based flexural pivot with monolithic arrangement. Precis. Eng. 35, 369–382 (2011)

    Article  Google Scholar 

  56. Zhou, H., Killekar, P.: The modified quadrilateral discretization model for the topology optimization of compliant mechanisms. J. Mech. Des. 133(11) (2011)

    Google Scholar 

Download references

Acknowledgements

This chapter is based on work done in collaboration with many other people, and the contributions of the co-authors on those works are gratefully acknowledged. This includes Spencer Magleby, Anton Bowden, Nathan Albrechtsen, Eric Dodgen, Eric Stratton, Joseph Jacobsen, and Brian Winder. The assistance of Danielle Peterson, Kevin Francis, Holly Greenberg and Larrin Wada are also appreciated. The author gratefully acknowledges support from Crocker Ventures, the Utah Technology Commercialization and Innovation Program, and the National Science Foundation through grant CMMI-0800606.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry L. Howell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this paper

Cite this paper

Howell, L.L. (2013). Compliant Mechanisms. In: McCarthy, J. (eds) 21st Century Kinematics. Springer, London. https://doi.org/10.1007/978-1-4471-4510-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4510-3_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4509-7

  • Online ISBN: 978-1-4471-4510-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics