Skip to main content

Kinematics and Algebraic Geometry

  • Conference paper

Abstract

This overview paper is a collection of several papers (Husty and Schröcker, Nonlinear Computational Geometry, The IMA Volumes in Mathematics and Its Applications, vol. 151, pp. 85–107, Springer, Berlin, 2010; Husty et al., Mech. Mach. Theory 42:66–81, 2007; Robotica 25:661–675, 2007; Schröcker et al., J. Mech. Des. 129:924–929, 2007; Walter et al., Contemporary Mathematics, vol. 496, pp. 331–346, American Mathematical Society, Providence, 2009; Walter and Husty, Mach. Des. Res. 26:218–226, 2010) that were published by the authors and their collaborators within the last ten years. As basic paradigm we show how problems in computational kinematics can be translated into the language of algebraic geometry and subsequently solved using techniques developed in this field mostly with help of an algebraic manipulation system.

The idea to transform kinematic features into the language of algebraic geometry is old and goes back to E. Study. Recent advances in algebraic geometry and symbolic computation gave the motivation to resume these ideas and make them successful in the solution of kinematic problems. It is not the aim of the paper to provide detailed solutions, but basic accounts to the used tools and examples where these techniques were applied within the last years. We start with Study’s kinematic mapping and show how kinematic entities can be transformed into algebraic varieties. The transformations in the image space that preserve the kinematic features are introduced. The main topics are the definition of constraint varieties and their application to the solution of direct and inverse kinematics of serial and parallel robots, to the analysis of workspaces and especially to the decomposition of these kinematic entities. We provide a new definition of the degree of freedom of a mechanical system and discuss singularities and global pathological behavior of selected mechanisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    An English translation of Blaschke’s work is in preparation: W. Blaschke, Kinematics and Quaternions, translated by M. Husty and P. Zsombor-Murray, Springer 2013.

  2. 2.

    Note that homogeneous coordinates in this chapter are written in the European notation, with homogenizing coordinate on first place.

  3. 3.

    For more detailed explanations see [4] or [27].

  4. 4.

    Note that in the examples of this section often only the input of maple is displayed. To obtain the results one has to type these commands into Maple.

  5. 5.

    In Sect. 4.2 we have defined affine varieties. When all defining polynomials of the variety are homogeneous then the zero set of these polynomials is called projective variety. Because in mechanism analysis affine as well as projective varieties occur we use the generic term algebraic variety in this section.

References

  1. Alizade, R., Bayram, C., Gezgin, E.: Structural synthesis of serial platform manipulators. Mech. Mach. Theory 42, 580–599 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Angeles, J.: Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  3. Blaschke, W.: Euklidische Kinematik und Nichteuklidische Geometrie. Z. Angew. Math. Phys. 60, 61–91 (1911); 203–204

    MATH  Google Scholar 

  4. Blaschke, W.: Kinematik und Quaternionen. Mathematische Monographien. Springer, Berlin (1960)

    MATH  Google Scholar 

  5. Bottema, O., Roth, B.: Theoretical Kinematics. Dover, New York (1979)

    MATH  Google Scholar 

  6. Bottema, O., Roth, B.: Theoretical Kinematics. Dover, New York (1990)

    MATH  Google Scholar 

  7. Cox, D.A., Little, J.B., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Springer, Berlin (1997)

    Google Scholar 

  8. Cox, D.A., Little, J.B., O’Shea, D.: Ideals, Varieties and Algorithms, 3rd edn. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  9. Coxeter, H.S.M.: Non-Euclidean Geometry, 6th edn. Math. Assoc. Amer. (1988)

    Google Scholar 

  10. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  11. Grünwald, J.: Ein Abbildungsprinzip, welches die ebene Geometrie und Kinematik mit der räumlichen Geometrie verknüpft. Österreich. Akad. Wiss. Math.-Natur. Kl. S.-B. II 80, 677–741 (1911)

    Google Scholar 

  12. Husty, M., Schröcker, H.-P.: Nonlinear Computational Geometry. The IMA Volumes in Mathematics and Its Applications, vol. 151, pp. 85–107. Springer, Berlin (2010). Chap. Algebraic geometry and kinematics

    Book  Google Scholar 

  13. Husty, M.L.: E. Borel’s and R. Bricard’s papers on displacements with spherical paths and their relevance to self-motions of parallel manipulators. In: Ceccarelli, M. (ed.) International Symposium on History of Machines and Mechanisms-Proceedings HMM 2000, pp. 163–172. Kluwer Acad., Dordrecht (2000)

    Google Scholar 

  14. Husty, M.L., Gosselin, C.: On the singularity surface of planar 3-RPR parallel mechanisms. Mech. Based Des. Struct. Mach. 36, 411–425 (2008)

    Article  Google Scholar 

  15. Husty, M.L., Karger, A.: Architecture singular parallel manipulators and their self-motions. In: Lenarcic, J., Stanisic, M.M. (eds.) Advances in Robot Kinematics, pp. 355–364. Kluwer Acad., Dordrecht (2000)

    Chapter  Google Scholar 

  16. Husty, M.L., Karger, A.: Self-motions of Griffis-Duffy type platforms. In: Proceedings of IEEE conference on Robotics and Automation (ICRA 2000), San Francisco, USA, pp. 7–12 (2000)

    Google Scholar 

  17. Husty, M.L., Karger, A.: Architecture singular planar Stewart-Gough platforms. In: Proceedings of the 10th Workshop RAAD, Vienna, Austria, p. 6 (2001). CD-Rom Proceedings

    Google Scholar 

  18. Husty, M.L., Karger, A., Sachs, H., Steinhilper, W.: Kinematik und Robotik. Springer, Berlin, Heidelberg, New York (1997)

    Book  MATH  Google Scholar 

  19. Husty, M.L., Pfurner, M., Schröcker, H.-P.: A new and efficient algorithm for the inverse kinematics of a general serial 6R manipulator. Mech. Mach. Theory 42, 66–81 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Husty, M.L., Pfurner, M., Schröcker, H.-P., Brunnthaler, K.: Algebraic methods in mechanism analysis and synthesis. Robotica 25, 661–675 (2007)

    Article  Google Scholar 

  21. Masouleh, M.T., Gosselin, C., Husty, M., Walter, D.R.: Forward kinematic problem of 5-RPUR parallel mechanisms (3T2R) with identical limb structures. Mech. Mach. Theory 46, 945–959 (2011)

    Article  MATH  Google Scholar 

  22. Merlet, J.-P.: Singular configurations of parallel manipulators and Grassmann geometry. Int. J. Robot. Res. 8, 150–162 (1992)

    Article  Google Scholar 

  23. Pfurner, M.: Analysis of spatial serial manipulators using kinematic mapping. Ph.D. Thesis, University Innsbruck (2006)

    Google Scholar 

  24. Pottmann, H., Wallner, J.: Computational Line Geometry. Springer, Berlin (2001)

    MATH  Google Scholar 

  25. Rath, W.: Matrix groups and kinematics in projective spaces. Abh. Math. Semin. Univ. Hamb. 63, 177–196 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schröcker, H.-P., Husty, M.L., McCarthy, J.M.M.: Kinematic mapping based assembly mode evaluation of planar four-bar mechanisms. J. Mech. Des. 129, 924–929 (2007)

    Article  Google Scholar 

  27. Selig, J.M.: Geometric Fundamentals of Robotics. Monographs in Computer Science. Springer, New York (2005)

    MATH  Google Scholar 

  28. Sommese, A., Verschelde, J., Wampler, C.: Advances in polynomial continuation for solving problems in kinematics. ASME J. Mech. Des. 126, 262–268 (2004)

    Article  Google Scholar 

  29. Sommese, A.J., Wampler, C.W. II: The Numerical Solution of Systems of Polynomials Arising in Engineering and Science. World Scientific, Singapore (2005)

    Book  MATH  Google Scholar 

  30. Study, E.: Von den Bewegungen und Umlegungen. Math. Ann. 39, 441–566 (1891)

    Article  MathSciNet  MATH  Google Scholar 

  31. Study, E.: Geometrie der Dynamen. B.G. Teubner, Leipzig (1903)

    MATH  Google Scholar 

  32. Tsai, L.-W.: Robot Analysis: The Mechanics of Serial and Parallel Manipulators. Wiley, New York (1999)

    Google Scholar 

  33. Walter, D., Husty, M., Pfurner, M.: Contemporary Mathematics, vol. 496. American Mathematical Society, Providence (2009), pp. 331–346. Chap. A complete kinematic analysis of the SNU 3-UPU parallel manipulator

    Google Scholar 

  34. Walter, D.R., Husty, M.L.: On implicitization of kinematic constraint equations. Mach. Des. Res. 26, 218–226 (2010)

    Google Scholar 

  35. Wampler, C., Hauenstein, J., Sommese, A.: Mechanism mobility and a local dimension test. Mech. Mach. Theory 46, 1193–1206 (2011)

    Article  MATH  Google Scholar 

  36. Wampler, C.W.: Forward displacement analysis of general six-in-parallel SPS (Stewart) platform manipulators. Mech. Mach. Theory 31, 331–337 (1996)

    Article  Google Scholar 

  37. Wunderlich, W.: Ein vierdimensionales Abbildungsprinzip für ebene Bewegungen. Z. Angew. Math. Mech. 66, 421–428 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zlatanov, D., Fenton, R.G., Benhabib, B.: Identification and classification of the singular configurations of mechanisms. Mech. Mach. Theory 33, 743–760 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

The authors thank M. Pfurner and D. Walter for their agreement to use common results for this paper.

References [12] and [20] were used in this chapter reprinted with kind permission © Springer 2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred L. Husty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this paper

Cite this paper

Husty, M.L., Schröcker, HP. (2013). Kinematics and Algebraic Geometry. In: McCarthy, J. (eds) 21st Century Kinematics. Springer, London. https://doi.org/10.1007/978-1-4471-4510-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4510-3_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4509-7

  • Online ISBN: 978-1-4471-4510-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics