Advertisement

Polynomials, Computers, and Kinematics for the 21st Century

Abstract

A review of the history of kinematics and machine theory shows a direct connection between the ability to solve polynomial systems using algebraic and numerical techniques and the advancement of the analysis and synthesis of machine systems including robots. Research challenges in kinematic synthesis, compliant mechanisms and cable and tensegrity systems show an ever increasing need for the solutions of complex polynomial systems.

Keywords

Compliant Mechanism Polynomial System Task Position Stewart Platform Numerical Continuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The author gratefully acknowledges National Science Foundation grant CMMI 1068497 which provided support for materials in this book as part of the Workshop on 21st Century Kinematics. In addition, the leadership of Michael Stanisic and James Schmiedeler and Phil Vogelwede, organizers of the 2012 ASME Design Engineering Technical Conferences, the support of Jian Dai, Stephen Cranfield, and Carl Nelson, who are responsible for the ASME Mechanisms and Robotics Conference, and attention to detail by Erin Dolan, who managed the execution of the Workshop are gratefully acknowledged.

References

  1. 1.
    Koetsier, T.: From kinematically generated curves to instantaneous invariants: episodes in the history of instantaneous planar kinematics. Mech. Mach. Theory 21(6), 489–498 (1986) CrossRefGoogle Scholar
  2. 2.
    Moon, F.C.: History of the dynamics of machines and mechanisms from Leonardo to Timoshenko. In: Yan, H.S., Ceccarelli, M. (eds.) International Symposium on History of Machines and Mechanisms (2009). doi: 10.1007/978-1-4020-9485-9-1 Google Scholar
  3. 3.
    Koetsier, T.: A contribution to the history of kinematics—II. Mech. Mach. Theory 18(1), 43–48 (1983) CrossRefGoogle Scholar
  4. 4.
    Kempe, A.B.: On a general method of describing plane curves of the nth degree by linkwork. Proc. Lond. Math. Soc. VII, 213–216 (1976) MathSciNetGoogle Scholar
  5. 5.
    Jordan, D., Steiner, M.: Configuration spaces of mechanical linkages. Discrete Comput. Geom. 22, 297–315 (1999) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Connelly, R., Demaine, E.D.: Geometry and topology of polygonal linkages. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry. CRC Press, Boca Raton (2004), Chap. 9 Google Scholar
  7. 7.
    Denavit, J., Hartenberg, R.S.: A kinematic notation for lower-pair mechanisms based on matrices. ASME J. Appl. Mech. 22, 215–221 (1955) MathSciNetMATHGoogle Scholar
  8. 8.
    Freudenstein, F.: Kinematics: past, present and future. Mech. Mach. Theory 8, 151–160 (1973) CrossRefGoogle Scholar
  9. 9.
    Duffy, J.: The Analysis of Mechanisms and Robot Manipulators. Wiley, New York (1980), 419 pp. Google Scholar
  10. 10.
    Lee, H.Y., Liang, C.G.: Displacement analysis of the general spatial 7-link 7R mechanisms. Mech. Mach. Theory 23(2), 219–226 (1988) CrossRefGoogle Scholar
  11. 11.
    Canny, J., Emiris, I.: An efficient algorithm for the sparse matrix resultant. Applied algebra, algebraic algorithms and error correcting codes. Lect. Notes Comput. Sci. 673, 89–104 (1993). doi: 10.1007/3-540-56686-4-36 MathSciNetCrossRefGoogle Scholar
  12. 12.
    Neilsen, J., Roth, B.: Elimination methods for spatial synthesis. In: Merlet, J.P., Ravani, B. (eds.) Computational Kinematics. Solid Mechanics and Its Applications, vol. 40, pp. 51–62 (1995) CrossRefGoogle Scholar
  13. 13.
    Husty, M.L.: An algorithm for solving the direct kinematics of general Stewart-Gough platforms. Mech. Mach. Theory 31(4), 365–380 (1996) CrossRefGoogle Scholar
  14. 14.
    Freudenstein, F., Sandor, G.N.: Synthesis of path generating mechanisms by means of a programmed digital computer. ASME J. Eng. Ind. 81, 159–168 (1959) Google Scholar
  15. 15.
    Sheth, P.N., Uicker, J.J.: IMP (Integrated Mechanisms Program), a computer-aided design analysis system for mechanisms and linkages. ASME J. Eng. Ind. 94, 454–464 (1972) CrossRefGoogle Scholar
  16. 16.
    Suh, C.H., Radcliffe, C.W.: Kinematics and Mechanism Design. Wiley, New York (1978), p. 458 Google Scholar
  17. 17.
    Paul, R.P.: Robot Manipulators: Mathematics, Programming and Control. MIT Press, Cambridge (1981) Google Scholar
  18. 18.
    Kaufman, R.E., Maurer, W.G.: Interactive linkage synthesis on a small computer. In: ACM National Conference, Aug. 3–5 (1971) Google Scholar
  19. 19.
    Rubel, A.J., Kaufman, R.E.: KINSYN III: a new human-engineered system for interactive computer-aided design of planar linkages. ASME Trans. J. Eng. Ind., May (1977) Google Scholar
  20. 20.
    Erdman, A.G., Gustafson, J.: LINCAGES—a linkage interactive computer analysis and graphically enhanced synthesis package. ASME Paper No. 77-DTC-5, Chicago, Illinois (1977) Google Scholar
  21. 21.
    Hunt, L., Erdman, A.G., Riley, D.R.: MicroLINCAGES: microcomputer synthesis and analysis of planar linkages. In: Proceedings of the Seventh OSU Applied Mechanisms Conference, Dec. (1981) Google Scholar
  22. 22.
    Chuang, J.C., Strong, R.T., Waldron, K.J.: Implementation of solution rectification techniques in an interactive linkage synthesis program. ASME J. Mech. Des. 103, 657–664 (1981) CrossRefGoogle Scholar
  23. 23.
    Ruth, D.A., McCarthy, J.M.: SphinxPC: an implementation of four position synthesis for planar and spherical linkages. In: Proceedings of the ASME Design Engineering Technical Conferences, Sacramento, CA, Sept. 14–17 (1997) Google Scholar
  24. 24.
    Furlong, T.J., Vance, J.M., Larochelle, P.M.: Spherical mechanism synthesis in virtual reality. ASME J. Mech. Des. 121, 515 (1999) CrossRefGoogle Scholar
  25. 25.
    Liao, Q., McCarthy, J.M.: On the seven position synthesis of a 5-SS platform linkage. ASME J. Mech. Des. 123, 74–79 (2001) CrossRefGoogle Scholar
  26. 26.
    Roth, B., Freudenstein, F.: Synthesis of path-generating mechanisms by numerical methods. ASME J. Eng. Ind. 85B-3, 298–306 (1963) CrossRefGoogle Scholar
  27. 27.
    Freudenstein, F., Roth, B.: Numerical solution of systems of nonlinear equations. J. ACM 10(4), 550–556 (1963) MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Watson, L.T.: A globally convergent algorithm for computing fixed points of C 2 maps. J. Appl. Math. Comput. 18, 87–92 (1986) CrossRefGoogle Scholar
  29. 29.
    Morgan, A.P.: A homotopy for solving polynomial systems. J. Appl. Math. Comput. 5, 297–311 (1979) Google Scholar
  30. 30.
    Tsai, L.W., Morgan, A.P.: Solving the kinematics of the most general six- and five-degree-of-freedom manipulators by continuation methods. J. Mech. Transm. Autom. Des. 107, 189–200 (1985) CrossRefGoogle Scholar
  31. 31.
    Wampler, C.W., Morgan, A.P.: Complete solution for the nine-point path synthesis problem for four-bar linkages. J. Mech. Des. 114(1), 153–159 (1992). doi: 10.1115/1.2916909 CrossRefGoogle Scholar
  32. 32.
    Raghavan, M., Roth, B.: Inverse kinematics of the general 6R manipulator and related linkages. J. Mech. Des. 115(3), 502–508 (1993). doi: 10.1115/1.2919218 CrossRefGoogle Scholar
  33. 33.
    Raghavan, M., Roth, B.: Solving polynomial systems for kinematic analysis and synthesis of mechanisms and robot manipulators. J. Mech. Des. 117(B), 71–79 (1995). doi: 10.1115/1.2836473 CrossRefGoogle Scholar
  34. 34.
    Raghavan, M.: The Stewart platform of general geometry has 40 configurations. J. Mech. Des. 115(2), 277–282 (1993). doi: 10.1115/1.2919188 CrossRefGoogle Scholar
  35. 35.
    Lee, E., Mavroidis, C.: Solving the geometric design problem of spatial 3R robot manipulators using polynomial homotopy continuation. ASME J. Mech. Des. 124(4), 652–661 (2002) CrossRefGoogle Scholar
  36. 36.
    Verschelde, J., Haegemans, A.: The GBQ algorithm for constructing start systems of homotopies for polynomial systems. SIAM J. Numer. Anal. 30(2), 583–594 (1993) MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Verschelde, J.: Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation. ACM Trans. Math. Softw. 25(2), 251–276 (1999) MATHCrossRefGoogle Scholar
  38. 38.
    Wise, S.M., Sommese, A.J., Watson, L.T.: Algorithm 801: POLSYS PLP: a partitioned linear product homotopy code for solving polynomial systems of equations. ACM Trans. Math. Softw. 26, 176–200 (2000) MATHCrossRefGoogle Scholar
  39. 39.
    Lee, E., Mavroidis, C.: Geometric design of 3R robot manipulators for reaching four end-effector spatial poses. Int. J. Robot. Res. 23(3), 247–254 (2004) CrossRefGoogle Scholar
  40. 40.
    Su, H., McCarthy, J.M., Sosonkina, M., Watson, L.T.: POLSYS GLP: a parallel general linear product homotopy code. ACM Trans. Math. Softw. 32(4), 561–579 (2006) MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Su, H., McCarthy, J.M., Watson, L.T.: Generalized linear product homotopy algorithms and the computation of reachable surfaces. ASME J. Comput. Inf. Sci. Eng. 4(3), 226–234 (2004) CrossRefGoogle Scholar
  42. 42.
    Perez, A., McCarthy, J.M.: Dual quaternion synthesis of constrained robotic systems. ASME J. Mech. Des. 126(3), 425–435 (2004) CrossRefGoogle Scholar
  43. 43.
    Perez-Gracia, A., McCarthy, J.M.: Kinematic synthesis of spatial serial chains using Clifford algebra exponentials. Proc. Inst. Mech. Eng. Part C, J. Mech. Eng. Sci. 220(C7), 951–966 (2006) Google Scholar
  44. 44.
    Sommese, A.J., Wampler, C.W.: The Numerical Solution of Systems of Polynomials Arising in Engineering and Science. World Scientific Publishing Co., New Jersey (2005) MATHCrossRefGoogle Scholar
  45. 45.
    Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini: Software for Numerical Algebraic Geometry. http://www.nd.edu/sommese/bertini
  46. 46.
    Lee, T.L., Li, T.Y., Tsai, C.H.: HOM4PS-2.0: a software package for solving polynomial systems by the polyhedral homotopy continuation method. Computing 83, 109–133 (2008) MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Midha, A., Erdman, A.G., Frohrib, D.A.: An approximate method for the dynamic analysis of elastic linkages. ASME J. Eng. Ind. 99, 449 (1977) CrossRefGoogle Scholar
  48. 48.
    Her, I., Midha, A.: A compliance number concept for compliant mechanisms and type synthesis. ASME J. Mech. Transm. Autom. Des. 109, 348 (1987) CrossRefGoogle Scholar
  49. 49.
    Hill, T.C., Midha, A.: A graphical, user-driven Newton-Raphson technique for use in the analysis and design of compliant mechanisms. ASME J. Mech. Des. 112, 123 (1990) CrossRefGoogle Scholar
  50. 50.
    Kota, S., Ananthasuresh, G.K., Crary, S.B., Wise, K.D.: Design and fabrication of microelectromechanical systems. ASME J. Mech. Des. 116, 1081 (1994) CrossRefGoogle Scholar
  51. 51.
    Frecker, M.I., Ananthasuresh, G.K., Nishiwaki, S., Kikuchi, N., Kota, S.: Topological synthesis of compliant mechanisms using multi-criteria optimization. ASME J. Mech. Des. 119, 238 (1997) CrossRefGoogle Scholar
  52. 52.
    Howell, L.: Compliant Mechanisms. Wiley, New York (2001) Google Scholar
  53. 53.
    Kimball, C., Tsai, L.W.: Modeling of flexural beams subjected to arbitrary end loads. ASME J. Mech. Des. 124, 223 (2002) CrossRefGoogle Scholar
  54. 54.
    Jensen, B.D., Howell, L.L.: Bistable configurations of compliant mechanisms modeled using four links and translational joints. ASME J. Mech. Des. 126, 657 (2004) CrossRefGoogle Scholar
  55. 55.
    Su, H.J., McCarthy, J.M.: A polynomial homotopy formulation of the inverse static analysis for planar compliant mechanisms. ASME J. Mech. Des. 128, 776 (2006) CrossRefGoogle Scholar
  56. 56.
    Su, H.J., McCarthy, J.M.: Synthesis of bistable compliant four-bar mechanisms using polynomial homotopy. ASME J. Mech. Des. 129, 1094 (2007) CrossRefGoogle Scholar
  57. 57.
    Hegde, S., Ananthasuresh, G.K.: Design of single-input-single-output compliant mechanisms for practical applications using selection maps. ASME J. Mech. Des. 132, 081007 (2010) CrossRefGoogle Scholar
  58. 58.
    Lusk, C.P., Howell, L.L.: A micro helico-kinematic platform via spherical crank-sliders. ASME Journal of Mechanical Design 130 (2008) Google Scholar
  59. 59.
    Espinosa, D.A., Lusk, C.P.: Part 1: moment-dependent pseudo-rigid-body models for straight beams. In: Proc. ASME 2010 Design Engineering Technical Conferences. Paper No. DETC2010-29230 (2010) Google Scholar
  60. 60.
    Griffis, M., Duffy, J.: Kinestatic control: a novel theory for simultaneously regulating force and displacement. ASME J. Mech. Des. 113, 508–515 (1991) CrossRefGoogle Scholar
  61. 61.
    Wang, B.B.: Cable-strut systems: part I—Tensegrity. J. Constr. Steel Res. 45(3), 281–289 (1998) CrossRefGoogle Scholar
  62. 62.
    Motro, R.: Tensegrity: Structural Systems for the Future. Kogan Page Ltd., London (2003) Google Scholar
  63. 63.
    Duffy, J., Rooney, J., Knight, B., Crane, C.D. III: A review of a family of self-deploying tensegrity structures with elastic ties. Shock Vib. Dig. 32(2), 100–106 (2000) CrossRefGoogle Scholar
  64. 64.
    Crane, C.D. III, Duffy, J., Correa, J.C.: Static analysis of tensegrity structure. ASME J. Mech. Des. 127, 257–268 (2005) CrossRefGoogle Scholar
  65. 65.
    Tibert, A.G., Pellegrino, S.: Deployable tensegrity masts. In: 44th Structures, Structural Dynamics, and Materials Conference. Paper No. AIAA2003, 1978 (2003) Google Scholar
  66. 66.
    Barrette, G., Gosselin, C.M.: Determination of the dynamic workspace of cable-driven planar parallel mechanisms. ASME J. Mech. Des. 127, 242–248 (2005) CrossRefGoogle Scholar
  67. 67.
    Moon, Y., Crane, C.D. III, Roberts, R.G.: Analysis of a planar tensegrity-based compliant mechanism. In: Proc. ASME 2010 Design Engineering Technical Conferences. Paper No. DETC2010-28 (2010) Google Scholar
  68. 68.
    Stump, E., Kumar, V.: Workspaces of cable-actuated parallel manipulators. ASME J. Mech. Des. 128(1), 159–167 (2006) CrossRefGoogle Scholar
  69. 69.
    Jiang, Q., Kumar, V.: The direct kinematics of objects suspended from cables. In: Proc. ASME 2010 Design Engineering Technical Conferences. Paper No. DETC2010-280 (2010) Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Robotics and Automation LaboratoryUniversity of CaliforniaIrvineUSA

Personalised recommendations