Improving the Accuracy of Tuning of PID Controllers

  • Igor Boiko
Part of the Advances in Industrial Control book series (AIC)

Abstract

Chapter 4 presents a nonlinear model of the flow process controlled by a pneumatically actuated valve. Through the example of the flow loop, it is shown that the accuracy of optimal tuning rules can be increased if precise and possibly nonlinear process models are used for optimisation. An example illustrating this approach is provided.

References

  1. 5.
    Åström, K. J., & Hägglund, T. (1984). Automatic tuning of simple regulators with specifications on phase and amplitude margins. Automatica, 20, 645–651. MATHCrossRefGoogle Scholar
  2. 6.
    Åström, K. J., & Hägglund, T. (1995). PID Controllers: Theory, Design and Tuning (2nd ed.). Durham: Research Triangle Park, NC: Instrument Society America. Google Scholar
  3. 8.
    Atherton, D. P. (1975). Nonlinear Control Engineering—Describing Function Analysis and Design. Workingham: Van Nostrand. Google Scholar
  4. 12.
    Beater, P. (2007). Pneumatic Drives: System Design, Modelling and Control. Berlin: Springer. Google Scholar
  5. 19.
    Boiko, I. (2008). Modified relay feedback test and its use for non-parametric loop tuning. In 2008 American Control Conference, Seattle, USA (pp. 4755–4760). CrossRefGoogle Scholar
  6. 24.
    Boiko, I., & Sayedain, S. (2010). Analysis of dynamic nonlinearity of flow control loop through modified relay feedback test probing. International Journal of Control, 83(12), 2580–2587. MathSciNetMATHCrossRefGoogle Scholar
  7. 27.
    Boiko, I. (2012). Loop tuning with specification on gain and phase margins via modified second-order sliding mode control algorithm. International Journal of Systems Science, 43(1), 97–104. MathSciNetCrossRefGoogle Scholar
  8. 44.
    Johnson, M., & Moradi, M. (2005). PID Control: New Identification and Design Methods. London: Springer. Google Scholar
  9. 64.
    Najim, K., Poznyak, A., & Ikonen, E. (1996). Calculation of residence time for nonlinear systems. International Journal of Systems Science, 27, 661–667. MATHCrossRefGoogle Scholar
  10. 65.
    Najim, K., Rusnak, A., Meszaros, A., & Fikar, M. (1997). Constrained long-range predictive control based on artificial neural networks. International Journal of Systems Science, 28, 1211–1226. CrossRefGoogle Scholar
  11. 66.
    O’Dwyer, A. (2006). Handbook of PI and PID Controller Tuning Rules. London: Imperial College Press. CrossRefGoogle Scholar
  12. 73.
    Sayedain, S., & Boiko, I. (2011). Optimal PI tuning for flow loop, based on the modified relay feedback test. In 2011 IEEE Conference on Decision and Control, Orlando, USA. Google Scholar
  13. 74.
    Sayedain, S. (2011). Optimal PI and PID tuning for flow loops based on the modified relay feedback test approach. MSc Thesis, University of Calgary, Calgary, Alberta, Canada. Google Scholar
  14. 77.
    Sjoberg, J., Zhang, Q., Ljung, L., Benveniste, A., Delyon, B., Glorennec, P., Hjalmarsson, H., & Juditsky, A. (1995). Nonlinear black-box modeling in system identification: a unified overview. Automatica, 31, 1691–1724. MathSciNetCrossRefGoogle Scholar
  15. 88.
    Ziegler, J. G., & Nichols, N. B. (1942). Optimum settings for automatic controllers. Transactions of the American Society of Mechanical Engineers, 64, 759–768. Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Igor Boiko
    • 1
  1. 1.Electrical Engineering DepartmentThe Petroleum InstituteAbu DhabiUnited Arab Emirates

Personalised recommendations