Skip to main content
  • 1101 Accesses

Abstract

Many modern computing applications have been enabled through the use of real-time multimedia processing. While several hardware architectures have been proposed in the research literature to support such primitives, these fail to address applications whose performance and resource requirements have a dynamic aspect. Embedded multimedia systems typically need a power and computation efficient design in addition to good compression performance. In this chapter, we introduce a Polymorphic Wavelet Architecture (Poly-DWT) as a crucial building block towards the development of embedded systems to address such challenges. We illustrate how our Poly-DWT architecture can potentially make dynamic resource allocation decisions, such as the internal bit representation and the processing kernel, according to the application requirements. We introduce a filter switching architecture that allows for dynamic switching between 5/3 and 9/7 wavelet filters and leads to a more power-efficient design. Further, a multiplier-free design with a low adder requirement demonstrates the potential of Poly-DWT for embedded systems. Through an FPGA prototype, we perform a quantitative analysis of our Poly-DWT architecture, and compare our filter to existing approaches to illustrate the area and performance benefits inherent in our approach. Poly-DWT serves as an example of joint design of algorithms and architectures for multimedia compression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, M.D., Kossentini, F.: JasPer: a software-based JPEG-2000 codec implementation. In: Proc. IEEE Intl. Conf. Image Processing, ICIP 2000, vol. 2, pp. 53–56 (2000). doi:10.1109/ICIP.2000.899223

    Google Scholar 

  2. Alam, M., Rahman, C., Badawy, W., Jullien, G.: Efficient distributed arithmetic based DWT architecture for multimedia applications. In: Proc. Int. Work. SoC for Real Time Applications, pp. 333–336 (2003)

    Google Scholar 

  3. Ansari, R., Guillemot, C., Kaiser, J.: Wavelet construction using Lagrange halfband filters. IEEE Trans. Circuits Syst. 38(9), 1116–1118 (1991)

    Article  Google Scholar 

  4. Benkrid, A., Benkrid, K., Crookes, D.: Design and implementation of a generic 2D orthogonal discrete wavelet transform on FPGA. In: Proc. IEEE Symp. Field-Programmable Custom Computing Machines (FCCM), pp. 162–172 (2003)

    Google Scholar 

  5. Benkrid, A., Crookes, D., Benkrid, K.: Design and implementation of a generic 2D biorthogonal discrete wavelet transform on an FPGA. In: Proc. IEEE Symp. Field-Programmable Custom Computing Machines (FCCM), pp. 190–198 (2001)

    Google Scholar 

  6. Chang, M., Hauck, S.: Automated least-significant bit datapath optimization for FPGAs. In: Proc. IEEE Symp. Field-Programmable Custom Computing Machines (FCCM), pp. 59–67 (2004)

    Chapter  Google Scholar 

  7. Choi, S.-J., Woods, J.W.: Motion-compensated 3-d subband coding of video. IEEE Trans. Image Process. 8(2), 155–167 (1999). doi:10.1109/83.743851

    Article  Google Scholar 

  8. Christopoulos, C., Skodras, A., Ebrahimi, T.: The JPEG2000 still image coding system: an overview. IEEE Trans. Consum. Electron. 46(4), 1103–1127 (2000)

    Article  Google Scholar 

  9. Chrysafis, C., Ortega, A.: Line based reduced memory, wavelet image compression. In: Proc. of Data Compression Conference, DCC’98, pp. 398–407 (1998). doi:10.1109/DCC.1998.672177

    Google Scholar 

  10. Claus, C., Stechele, W., Kovatsch, M., Angermeier, J., Teich, J.: A comparison of embedded reconfigurable video-processing architectures. In: Proc. IEEE Int. Conf. on Field Programmable Logic and Applications, FPL 2008, pp. 587–590 (2008). doi:10.1109/FPL.2008.4630015

    Chapter  Google Scholar 

  11. Claus, C., Zhang, B., Stechele, W., Braun, L., Hubner, M., Becker, J.: A multi-platform controller allowing for maximum Dynamic Partial Reconfiguration throughput. In: Proc. IEEE Int. Conf. on Field Programmable Logic and Applications, FPL 2008, pp. 535–538 (2008). doi:10.1109/FPL.2008.4630002

    Chapter  Google Scholar 

  12. Eeckhaut, H., Devos, H., Lambert, P., de Schrijver, D., van Lancker, W., Nollet, V., Avasare, P., Clerckx, T., Verdicchio, F., Christiaens, M., Schelkens, P., van de Walle, R., Stroobandt, D.: Scalable, wavelet-based video: from server to hardware-accelerated client. IEEE Trans. Multimed. 9(7), 1508–1519 (2007)

    Article  Google Scholar 

  13. Fry, T.W., Hauck, S.A.: SPIHT image compression on FPGAs. IEEE Trans. Circuits Syst. Video Technol. 15(9), 1138–1147 (2005). doi:10.1109/TCSVT.2005.852625

    Article  Google Scholar 

  14. Le Gall, D., Tabatabai, A.: Sub-band coding of digital images using symmetric short kernel filters and arithmetic coding techniques. In: Proc. Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), pp. 761–764 (1988)

    Chapter  Google Scholar 

  15. Huang, C.-T., Tseng, P.-C., Chen, L.-G.: VLSI architecture for discrete wavelet transform based on B-spline factorization. In: Proc. IEEE Work. Signal Processing Systems, SIPS 2003, pp. 346–350 (2003)

    Chapter  Google Scholar 

  16. Koch, D., Beckhoff, C., Teich, J.: ReCoBus-Builder—a novel tool and technique to build statically and dynamically reconfigurable systems for FPGAs. In: Proc. IEEE Int. Conf. on Field Programmable Logic and Applications, FPL 2008, pp. 119–124 (2008). doi:10.1109/FPL.2008.4629918

    Chapter  Google Scholar 

  17. Kotteri, K., Barua, S., Bell, A., Carletta, J.: A comparison of hardware implementations of the biorthogonal 9/7 DWT: convolution versus lifting. IEEE Trans. Circuits Syst. II 52(5), 256–260 (2005)

    Article  Google Scholar 

  18. Leeser, M., Miller, S., Haiqian, Y.: Smart camera based on reconfigurable hardware enables diverse real-time applications. In: Proc. IEEE Symp. Field-Programmable Custom Computing Machines (FCCM), pp. 147–155 (2004)

    Chapter  Google Scholar 

  19. Lian, C.-J., Chen, K.-F., Chen, H.-H., Chen, L.-G.: Analysis and architecture design of block-coding engine for EBCOT in JPEG 2000. IEEE Trans. Circuits Syst. Video Technol. 13(3), 219–230 (2003). doi:10.1109/TCSVT.2003.809833

    Article  Google Scholar 

  20. Martina, M., Masera, G.: Low-complexity, efficient 9/7 wavelet filters implementation. In: Proc. IEEE Int. Conf. Image Processing (ICIP) (2005)

    Google Scholar 

  21. Martina, M., Masera, G.: Multiplierless, folded 9/7–5/3 wavelet VLSI architecture. IEEE Trans. Circuits Syst. II 54(9), 770–774 (2007)

    Article  Google Scholar 

  22. Mittal, A., Pande, A., Verma, P.K.: Content-based network resource allocation for mobile engineering laboratory applications. In: Proc. Int. Conf. Mobile Learning, pp. 146–152 (2007)

    Google Scholar 

  23. Pande, A., Zambreno, J.: Polymorphic wavelet architecture over reconfigurable hardware. In: IEEE Int. Conf. on Field Programmable Logic and Applications, pp. 471–474 (2008)

    Google Scholar 

  24. Pande, A., Verma, A., Mittal, A., Agrawal, A.: Network aware efficient resource allocation for mobile-learning video systems. In: Proc. Int. Conf. Mobile Learning, pp. 189–196 (2007)

    Google Scholar 

  25. Pande, A., Zambreno, J.: Design and analysis of efficient reconfigurable wavelet filters. In: Proc. IEEE Int. Conf. Electro Information Technology, pp. 337–342 (2008)

    Google Scholar 

  26. Paulsson, K., Hubner, M., Becker, J.: Exploitation of dynamic and partial hardware reconfiguration for on-line power/performance optimization. In: Proc. IEEE Int. Conf. Field Programmable Logic and Applications, FPL 2008, pp. 699–700 (2008). doi:10.1109/FPL.2008.4630044

    Chapter  Google Scholar 

  27. Qiu, R., Yu, W.: An efficient quality scalable motion-JPEG2000 transmission scheme. Technical Report WUCS-01-37, Department of Computer Science, Washington University in St. Louis (November 2001). citeseer.ist.psu.edu/qiu01efficient.html

  28. Redmill, D., Bull, D., Martin, R.: Design of multiplier free linear phase perfect reconstruction filter banks using transformations and genetic algorithms. In: Proc. Int. Conf. Image Processing and Its Applications (1997)

    Google Scholar 

  29. Ritter, J., Molitor, P.: A pipelined architecture for partitioned DWT based lossy image compression using FPGAs. In: Proc. Int. Symposium on Field Programmable Gate Arrays (FPGA), pp. 201–206 (2001)

    Google Scholar 

  30. Said, A., Pearlman, W.: An image multiresolution representation for lossless and lossy image compression. IEEE Trans. Image Process. 5, 1303–1310 (1996)

    Article  Google Scholar 

  31. Schwarz, H., Marpe, D., Wiegand, T.: Overview of the scalable video coding extension of the H.264/AVC Standard. IEEE Trans. Circuits Syst. Video Technol. 17(9), 1103–1120 (2007). doi:10.1109/TCSVT.2007.905532

    Article  Google Scholar 

  32. Shapiro, J.: Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans. Signal Process. 41(12), 3445–3462 (1993)

    Article  MATH  Google Scholar 

  33. Skodras, A., Christopoulos, C., Ebrahimi, T.: The JPEG 2000 still image compression standard. IEEE Signal Process. Mag. 18(5), 36–58 (2001). doi:10.1109/79.952804

    Article  Google Scholar 

  34. Stine, J., Castellanos, I., Wood, M., Henson, J., Love, F., Davis, W.R., Franzon, P.D., Bucher, M., Basavarajaiah, S., Oh, J., Jenkal, R.: FreePDK: an open-source variation-aware design kit. In: IEEE Int. Conf. on Microelectronic Systems Education, MSE 2007, pp. 173–174 (2007). doi:10.1109/MSE.2007.3

    Chapter  Google Scholar 

  35. Stroobandt, D., Eeckhaut, H., Devos, H., Christiaens, M., Verdicchio, F., Schelkens, P.: Reconfigurable hardware for a scalable wavelet video decoder and its performance requirements. In: Computer Systems: Architectures, Modeling, and Simulation. Lecture Notes in Computer Science, vol. 3133, pp. 203–212. Springer, Berlin (2004)

    Chapter  Google Scholar 

  36. Taubman, D.: High performance scalable image compression with EBCOT. IEEE Trans. Image Process. 9(7), 1158–1170 (2000)

    Article  Google Scholar 

  37. Tay, D.: Rationalizing the coefficients of popular biorthogonal wavelet filters. IEEE Trans. Circuits Syst. Video Technol. 10(6), 998–1005 (2000)

    Article  Google Scholar 

  38. Tian, J.: SPIHT coder. http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=4808&objectType=file (2008)

  39. Tseng, P., Chang, Y., Huang, Y., Fang, H., Huang, C., Chen, L.: Advances in hardware architectures for image and video coding—a survey. Proc. IEEE 93(1), 184–197 (2005). doi:10.1109/JPROC.2004.839622

    Article  Google Scholar 

  40. Verma, P.K., Pande, A., Mittal, A., Kumar, P.: Content-based network adaptive wireless transmission of remote surveillance video. In: National Conf. on Communications, India (2008)

    Google Scholar 

  41. Verma, P.K., Mittal, A., Kumar, P.: Fusion of thermal infrared and visible spectrum video for robust surveillance. In: ICVGIP, pp. 528–539 (2006)

    Google Scholar 

  42. Vetterli, M., Kovačevic, J.: Wavelets and Subband Coding. Prentice-Hall, Upper Saddle River (1995)

    MATH  Google Scholar 

  43. Villasenor, J., Belzer, B., Liao, J.: Wavelet filter evaluation for image compression. IEEE Trans. Image Process. 4(8), 1053–1060 (1995)

    Article  Google Scholar 

  44. Yang, W., Lu, Y., Wu, F., Cai, J., Ngan, K.N., Li, S.: 4-D wavelet-based multiview video coding. IEEE Trans. Circuits Syst. Video Technol. 16(11), 1385–1396 (2006). doi:10.1109/TCSVT.2006.884571

    Article  Google Scholar 

  45. Zhang, X., Rabah, H., Weber, S.: Auto-adaptive reconfigurable architecture for scalable multimedia applications. In: Second NASA/ESA Conference on Adaptive Hardware and Systems, AHS 2007, pp. 139–145 (2007). doi:10.1109/AHS.2007.34

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Pande, A., Zambreno, J. (2013). Polymorphic Wavelet Transform. In: Embedded Multimedia Security Systems. Springer, London. https://doi.org/10.1007/978-1-4471-4459-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4459-5_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4458-8

  • Online ISBN: 978-1-4471-4459-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics