Challenges Imposed by Thermochemical Expansion of Solid State Electrochemical Materials

Part of the Green Energy and Technology book series (GREEN)


Thermal expansion compatibility is usually considered a sine qua non condition for selection of prospective materials for SOFC and other solid state electrochemical systems due to fragile behaviour of ceramic components, and their limited ability to withstand significant strain. However, chemical expansion may also add non-negligible strain contributions on materials with variable oxygen stoichiometry. Thus, one measured the chemical expansion of representative materials and compiled information on a variety of other electronic or mixed conductors proposed for electrode, membrane or interconnector applications. Selected materials were used to identify trends and guidelines for effects of composition and for structural effects. Dependence on working conditions was focused on temperature and oxygen partial pressure. It was also extended to predict effects exerted by overpotential or changes in gas composition, and dependence on fuel conversion when membrane materials are exposed to high chemical potential gradients under fuel/membrane/air conditions. Redox conditions were predicted by thermodynamic analysis of fuel conversion, for hydrogen and methane-based fuels. These thermodynamic calculations were combined with thermochemical expansion data for representative materials, to predict strain induced on: (1) solid electrolytes or mixed conducting membranes exposed to high chemical potential gradients, (2) cathode materials under combined effects of changes from processing to operation temperatures and polarisation, (3) anode materials on changing from high temperature processing in air to reduce fuel atmospheres. Differences between thermochemical effects on anode supported configurations and electrolyte supported cells were analysed, including lab scale conditions based on thick solid electrolyte cells with thin electrodes.


Oxygen Partial Pressure Oxygen Stoichiometry Perovskite Material Fuel Conversion Lower Valence State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the FCT, Portugal (Project REEQ/710/CTM/2005) and the European Commission (Project Matsilc-(STRP 033410).


  1. 1.
    H.U. Anderson, Solid State Ionics 52, 33 (1992)CrossRefGoogle Scholar
  2. 2.
    K.L. Ley, M. Krumpelt, R. Kumar, J. Mat. Res. 11, 1489 (1996)CrossRefGoogle Scholar
  3. 3.
    C.S. Montross, H. Yokokawa, M. Dokiya, Brit. Ceram. Trans. 101, 85 (2002)CrossRefGoogle Scholar
  4. 4.
    H. Ullmann, N. Trofimenko, F. Tietz, D. Stover, A. Ahmad-Khanlou, Solid State Ionics 138, 79 (2000)Google Scholar
  5. 5.
    A. Petric, P. Huang, F. Tietz, Solid State Ionics 135, 719 (2000)CrossRefGoogle Scholar
  6. 6.
    D. Waldbillig, A. Wood, D.G. Ivey, Solid State Ionics 176, 847 (2005)CrossRefGoogle Scholar
  7. 7.
    M. Greenberg, E. Wachtel, I. Lubomirsky, J. Fleig, J. Maier, Adv. Funct. Mater. 16, 48 (2006)CrossRefGoogle Scholar
  8. 8.
    A. Kossoy, Y. Feldman, R. Korobko, E. Wachtel, I. Lubomirsky, J. Maier, Adv. Funct. Mater. 19, 634 (2009)CrossRefGoogle Scholar
  9. 9.
    A. Kossoy, Y. Feldman, R. Korobko, E. Wachtel, I. Lubomirsky, J. Maier, Adv. Mater. 22, 1659 (2010)CrossRefGoogle Scholar
  10. 10.
    T. Kawada, N. Sakai, H. Yokokawa, M. Dokiya, I. Anzai, Solid State Ionics 50, 189 (1992)CrossRefGoogle Scholar
  11. 11.
    J.A.M. Vanroosmalen, E.H.P. Cordfunke, Solid State Ionics 52, 303 (1992)CrossRefGoogle Scholar
  12. 12.
    J.A. Labrincha, J.R. Frade, F.M.B. Marques, J. Mater. Sci. 28, 3809 (1993)CrossRefGoogle Scholar
  13. 13.
    K.Q. Huang, M. Feng, J.B. Goodenough, C. Milliken, J. Electrochem. Soc. 144, 3620 (1997)CrossRefGoogle Scholar
  14. 14.
    A. Tsoga, A. Gupta, A. Naoumidis, P. Nikolopoulos, Acta Mater. 48, 4709 (2000)CrossRefGoogle Scholar
  15. 15.
    R.N. Basu, F. Tietz, E. Wessel, D. Stover, J. Mater. Proc. Technol. 147, 85 (2004)CrossRefGoogle Scholar
  16. 16.
    Y. Takeda, R. Kanno, M. Roda, Y. Tomida, O. Yamamoto, J. Electrochem. Soc. 134, 2656 (1987)CrossRefGoogle Scholar
  17. 17.
    F.M.B. Marques, L.M. Navarro, Solid State Ionics 100, 29 (1997)CrossRefGoogle Scholar
  18. 18.
    S.H. Chan, X.J. Chen, K.A. Khor, Solid State Ionics 158, 29 (2003)CrossRefGoogle Scholar
  19. 19.
    H.T. Lim, A.V. Virkar, J. Power Sources 192, 267 (2009)CrossRefGoogle Scholar
  20. 20.
    Y. Tao, H. Nishino, S. Ashidate, H. Kokubo, M. Watanabe, H. Uchida, Electrochim. Acta 54, 3309 (2009)CrossRefGoogle Scholar
  21. 21.
    S. Uhlenbruch, T. Moskalewicz, N. Jordan, H.J. Penkalla, H.P. Buchkremer, Solid State Ionics 180, 418 (2009)CrossRefGoogle Scholar
  22. 22.
    Z. Lu, X.D. Zhou, D. Fisher, J. Templeton, J. Stevenson, N. Wu, A. Ignatiev, Electrochem. Comm. 12, 179 (2010)CrossRefGoogle Scholar
  23. 23.
    S. Taniguchi, M. Kadowaki, H. Kawamura, T. Yasuo, Y. Akiyama, Y. Miyake, T. Saitoh, J. Power Sources 55, 73 (1995)CrossRefGoogle Scholar
  24. 24.
    H. Yokokawa, T. Horita, N. Sakai, K. Yamaji, M.E. Brito, Y.P. Xiong, H. Kishimoto, Solid State Ionics 177, 3193 (2006)CrossRefGoogle Scholar
  25. 25.
    T. Horita, Y.P. Xiong, H. Kishimoto, K. Yamaji, M.E. Brito, H. Yokokawa, J. Electrochem. Soc. 157, B614 (2010)Google Scholar
  26. 26.
    S. Linderoth, N. Bonanos, K.V. Jensen, J.B. Bilde-Sorensen, J. Am. Ceram. Soc. 84, 2652 (2001)CrossRefGoogle Scholar
  27. 27.
    W.G. Coors, J.R. O´Brien, J.T. White, Solid State Ionics 180, 246 (2009)CrossRefGoogle Scholar
  28. 28.
    P.M. Delaforce, J.A. Yeomans, N.C. Filkin, G.J. Wright, J. Am. Ceram. Soc. 90, 918 (2007)CrossRefGoogle Scholar
  29. 29.
    X.D. Zhou, S.P Simner, J.W. Templeton, Z. Nie, J.W. Stevenson, P.P. Gorman, J. Electrochem. Soc. 157, B643 (2010)Google Scholar
  30. 30.
    M. Chen, B. Hallstedt, L.J. Gauckler, Solid State Ionics 176, 1457 (2005)CrossRefGoogle Scholar
  31. 31.
    T.S. Zhang, S.H. Chan, W. Wang, K. Hbaieb, L.B. Kong, J. Ma, Solid State Ionics 180, 82 (2009)CrossRefGoogle Scholar
  32. 32.
    R. Knibbe, J. Drennan, J.G. Love, Solid State Ionics 180, 984 (2009)CrossRefGoogle Scholar
  33. 33.
    D. Pomykalska, M.M. Bucko, M. Rekas, Solid State Ionics 181, 48 (2010)CrossRefGoogle Scholar
  34. 34.
    T.S. Zhang, Z.H. Du, S. Li, L.B. Kong, J. Lu, J. Ma, Solid State Ionics 180, 1311 (2009)CrossRefGoogle Scholar
  35. 35.
    K. Fujita, K. Ogasawara, Y. Matsuzaki, T. Sakurai, J. Power Sources 131, 261 (2004)CrossRefGoogle Scholar
  36. 36.
    S. Taniguchi, M. Kadowaki, T. Yasuo, Y. Akiyama, Y. Itoh, Y. Miyake, K. Nishio, Denki Kagaku 64, 568 (1996)Google Scholar
  37. 37.
    V. Vedasri, J.L. Young, V.I. Birss, J. Power Sources 195, 5534 (2010)CrossRefGoogle Scholar
  38. 38.
    Y. Wang, M.E. Walter, K. Sabolsky, M.M. Seabaugh, Solid State Ionics 177, 1517 (2006)CrossRefGoogle Scholar
  39. 39.
    S.D. Kim, H. Moon, S.H. Hyun, J. Moon, J. Kim, H.W. Lee, Solid State Ionics 178, 1304 (2007)CrossRefGoogle Scholar
  40. 40.
    A.C. Muller, D. Herbstritt, E. Ivers-Tiffee, Solid State Ionics 152, 537 (2002)CrossRefGoogle Scholar
  41. 41.
    J.R. Kong, K.N. Sun, D.R. Zhou, N.Q. Zhang, J. Mu, J.S. Qiao, J. Power Sources 166, 337 (2007)CrossRefGoogle Scholar
  42. 42.
    Q. Jeangros, A. Faes, J.B. Wagner, T.W. Hansen, U. Aschauer, J. Van Herle, A. Hessler-Wyser, R.E. Dunin-Borkowski, Acta Mater. 58, 4578 (2010)CrossRefGoogle Scholar
  43. 43.
    A. Faes, H.L. Frandsen, M. Pihlatie, A. Kaiser, D.R. Goldstein, J. Fuel Cell Sci. Tech. 7, 051011 (2010)CrossRefGoogle Scholar
  44. 44.
    T. Hatae, Y. Matsuzaki, S. Yamashita, Y. Yamazaki, J. Electrochem. Soc. 157, B650 (2010)Google Scholar
  45. 45.
    D. Waldbillig, A. Wood, D.G. Ivey, J. Power Sources 145, 206 (2005)CrossRefGoogle Scholar
  46. 46.
    D. Sarantaridis, A. Atkinson, Fuel Cells 7, 246 (2007)CrossRefGoogle Scholar
  47. 47.
    Y. Zhang, B. Liu, B.F. Tu, Solid State Ionics 176, 2193 (2005)CrossRefGoogle Scholar
  48. 48.
    A. Atkinson, S. Barnett, R.J. Gorte, J.T.S. Irvine, A.J. Mcevoy, M. Mogensen, S.C. Singhal, J. Vohs, Nat. Mater. 3, 17 (2004)CrossRefGoogle Scholar
  49. 49.
    O.A. Marina, N.L. Canfield, J.W. Stevenson, Solid State Ionics 149, 21 (2002)CrossRefGoogle Scholar
  50. 50.
    D.P. Fagg, V.V. Kharton, A.V. Kovalevsky, A.P. Viskup, E.N. Naumovich, J.R. Frade, J. Eur. Ceram. Soc. 21, 1831 (2001)Google Scholar
  51. 51.
    S.Q. Hui, A. Petri, J. Eur. Ceram. Soc. 22, 1673 (2002)CrossRefGoogle Scholar
  52. 52.
    J.P. Ouweltjes, M. van Tuel, M. Sillessen, G. Rietveld, Fuel Cells 9, 873 (2009)CrossRefGoogle Scholar
  53. 53.
    V.V. Kharton, E.V. Tsipis, I.P. Marozau, A.P. Viskup, J.R. Frade, J.T.S. Irvine, Solid State Ionics 178, 101 (2007)CrossRefGoogle Scholar
  54. 54.
    M.R. Pillai, I. Kim, D.M. Bierschenk, S.A. Barnett, J. Power Sources 185, 1086 (2008)CrossRefGoogle Scholar
  55. 55.
    C.D. Savaniu, J.T.S. Irvine, J. Mater. Chem. 19, 8119 (2009)CrossRefGoogle Scholar
  56. 56.
    T. Kolodiazhnyi, A. Petric, J. Electroceram. 15, 5 (2005)CrossRefGoogle Scholar
  57. 57.
    R. Moos, K.H. Hardtl, J. Am. Ceram. Soc. 80, 2549 (1997)CrossRefGoogle Scholar
  58. 58.
    S.Q. Hui, A. Petric, J. Electrochem. Soc. 149, J1 (2002)CrossRefGoogle Scholar
  59. 59.
    Q. Ma, F. Tietz, D. Sebold, D. Stover, J. Power Sources 195, 1920 (2010)CrossRefGoogle Scholar
  60. 60.
    A. Atkinson, Solid State Ion. 95, 249 (1997)CrossRefGoogle Scholar
  61. 61.
    K. Sato, K. Yasiro, T. Kawada, H. Yugami, T. Hashida, J. Mizusaki, J. Power Sources 195, 5481 (2009)CrossRefGoogle Scholar
  62. 62.
    R. Krishnamurthy, B.W. Sheldon, Acta Mater. 52, 1807 (2004)CrossRefGoogle Scholar
  63. 63.
    K. Sato, K. Yashiro, T. Kawada, H. Yugami, T. Hashida, J. Mizusaki, J. Power Sources 195, 5481 (2010)CrossRefGoogle Scholar
  64. 64.
    K. Sato, H. Omura, T. Hashida, K. Yashiro, H. Yugami, T. Kawada, J. Mizusaki, J. Test. Eval. 3, 246 (2006)Google Scholar
  65. 65.
    J.C. Grenier, N. Ea, M. Pouchard, P. Hagenmuller, J. Solid State Chem. 58, 243 (1985)CrossRefGoogle Scholar
  66. 66.
    F. Prado, N. Grunbaum, A. Caneiro, A. Manthiram, Solid State Ionics 167, 147 (2004)CrossRefGoogle Scholar
  67. 67.
    C. de la Calle, A. Aguadero, J.A. Alonso, M.T. Fernandez-Diaz, Solid State Sci. 10, 1924 (2008)CrossRefGoogle Scholar
  68. 68.
    Z.Q. Deng, W.S. Yang, W. Liu, C.S. Chen, J. Solid State Chem. 179, 362 (2006)CrossRefGoogle Scholar
  69. 69.
    S. McIntosh, J.F. Vente, W.G. Haije, D.H.A. Blank, H.J.M. Bouwmeester, Solid State Ionics 177, 833 (2006)CrossRefGoogle Scholar
  70. 70.
    S. Adler, S. Russek, J. Reimer, M. Fendorf, A. Stacy, Q.Z. Uang, A. Santoro, J. Lynn, J. Baltisberger, U. Werner, Solid State Ionics 68, 193 (1994)CrossRefGoogle Scholar
  71. 71.
    S. Streule, A. Podlesnyak, D. Sheptyakov, E. Pomjakushina, M. Stingaciu, K. Conder, M. Medarde, M.V. Patrakeev, I.A. Leonidov, V.L. Kozhevnikov, J. Mesot, Phys. Rev. B 73, 094203 (2006)CrossRefGoogle Scholar
  72. 72.
    J. Canales-Vazquez, F.M. Figueiredo, J.C. Waerenborgh, W.Z. Zhou, J.R. Frade, J.T.S. Irvine, J. Solid State Chem. 177, 3105 (2004)CrossRefGoogle Scholar
  73. 73.
    J. Canales-Vazquez, M.J. Smith, J.T.S. Irvine, W.Z. Zhou, Adv. Func. Mat. 15, 1000 (2005)CrossRefGoogle Scholar
  74. 74.
    A. Fossdal, M. Menan, I. Waernhus, K. Wiik, M.A. Einarsrud, T. Grande, J. Am. Ceram. Soc. 87, 1952 (2004)Google Scholar
  75. 75.
    H.L. Lein, K. Wiik, T. Grande, Solid State Ionics 177, 1795 (2006)CrossRefGoogle Scholar
  76. 76.
    S. McIntosh, J.F. Vente, W.G. Haije, D.H.A. Blank, H.J.M. Bouwmeester, Chem. Mat. 18, 2187–2193 (2006)CrossRefGoogle Scholar
  77. 77.
    R. Kriegel, R. Kircheisen, J. Topfer, Solid State Ionics 181, 64 (2010)CrossRefGoogle Scholar
  78. 78.
    V.V. Kharton, A.V. Kovalevsky, M. Avdeev, E.V. Tsipis, M.V. Patrakeev, A.A. Yaremchenko, E.N. Naumovich, J.R. Frade, Chem. Mat. 19, 2027–2033 (2007)CrossRefGoogle Scholar
  79. 79.
    T. Nakamura, K. Yashiro, K. Sato, J. Mizusaki, Solid State Ionics 181, 402 (2010)CrossRefGoogle Scholar
  80. 80.
    V. Kharton, A.A. Yaremchenko, M.V. Patrakeev, E.N. Naumovich, F.M.B. Marques, J. Eur. Ceram. Soc. 23, 1417–1426 (2003)CrossRefGoogle Scholar
  81. 81.
    X. Chen, J. Yu, S.B. Adler, Chem. Mater. 17, 4537–4546 (2005)CrossRefGoogle Scholar
  82. 82.
    A.A. Yaremchenko, V.V. Kharton, E.N. Naumovich, D.I. Shestakov, V.F. Chukharev, A.V. Kovalevsky, A.L. Shaula, M.V. Patrakeev, J.R. Frade, F.M.B. Marques, Solid State Ionics 177, 549–558 (2006)CrossRefGoogle Scholar
  83. 83.
    V.V. Kharton, E.V. Tsipis, I.P. Marozau, A.P. Viskup, J.R. Frade, J.T.S. Irvine, Solid State Ionics 178, 101 (2007)CrossRefGoogle Scholar
  84. 84.
    A.A. Yaremchenko, A.V. Kovalevsky, V.V. Kharton, Solid State Ionics 179, 2181 (2008)CrossRefGoogle Scholar
  85. 85.
    S.R. Bishop, K.L. Duncan, E.D. Wachsman, Electrochim. Acta 54, 1436 (2009)CrossRefGoogle Scholar
  86. 86.
    C.Y. Park, A.J. Jacobson, Solid State Ion. 176, 2671 (2005)CrossRefGoogle Scholar
  87. 87.
    V.V. Kharton, A.A. Yaremchenko, A.L. Shaula, A.P. Viskup, F.M.B. Marques, J.R. Frade, E.N. Naumovich, J.R. Casanova, I.P. Marozau, Def. Dif. Forum 226–228, 141 (2004)CrossRefGoogle Scholar
  88. 88.
    M. Mogensen, L. Lindegaard, U.R. Hansen, G. Mogensen, J. Electrochem. Soc. 141, 2122 (1994)CrossRefGoogle Scholar
  89. 89.
    A. Atkinsom, T.M.G.M. Ramos, Solid State Ionics 129, 259 (2000)CrossRefGoogle Scholar
  90. 90.
    S. Wang, E. Orikawa, T. Hashimoto, J. Electrochem. Soc. 15, E46 (2004)CrossRefGoogle Scholar
  91. 91.
    S.R. Bishop, K.L. Duncan, E.D. Wachsman, Acta Mater. 57, 3596 (2009)CrossRefGoogle Scholar
  92. 92.
    D. Perez-Coll, D. Marrero-Lopez, J.C. Ruiz-Morales, P. Nunez, J.C.C. Abrantes, J.R. Frade, J. Power Sources, 173, 291 (2007)CrossRefGoogle Scholar
  93. 93.
    T.R. Armstrong, J.W. Stevenson, L.R. Pederson, P.E. Raney, J. Electrochem. Soc. 143, 2919–2925 (1996)CrossRefGoogle Scholar
  94. 94.
    S. Miyoshi, J.O. Homg, K. Yashiro, A. Karmal, Y. Nigara, K. Kawamura, T. Kawada, J. Mizusaki, Solid State Ionics 161, 209 (2003)CrossRefGoogle Scholar
  95. 95.
    R.D. Shannon, Acta Cryst. A32, 751 (1976)Google Scholar
  96. 96.
    X Dong, Z. Xu, X. Chang, C. Zhang, W. Jin, J. Am. Ceram. Soc. 90, 3923–3929 (2007)Google Scholar
  97. 97.
    E.V. Tsipis, M.V. Patrakeev, V. Kharton, A.A. Yaremchenko, G.C. Mather, A.L. Shaula, I.A. Leonidov, V.L. Kozhevnikov, J.R. Frade, Solid State Sci. 7, 355 (2005)CrossRefGoogle Scholar
  98. 98.
    J.C. Waerenborgh, F.M. Figueiredo, J.R. Frade, M.T. Colomer, J.R. Jurado, J. Phys. Condens. Matter 13, 8171 (2001)CrossRefGoogle Scholar
  99. 99.
    S.M. Plint, P.A. Connor, S.W. Tao, J.T.S. Irvine, Solid State Ionics 177, 2005–2008 (2006)CrossRefGoogle Scholar
  100. 100.
    V.A. Kolotygin, E.V. Tsipis, A.L. Shaula, E.N. Naumovich, J.R. Frade, S. Bredikhin, V.V. Kharton, J. Sol. State Electrochem. 15, 313–327 (2011)Google Scholar
  101. 101.
    J.R. Frade, V.V. Kharton, A. Yaremchenko, E. Naumovich, J. Power Sour. 130, 77 (2004)CrossRefGoogle Scholar
  102. 102.
    A. Atkinson, A. Selçuk, Solid State Ionics 134, 59 (2000)CrossRefGoogle Scholar
  103. 103.
    A. Atkinson, B. Sun, Matter. Sci. Tech. 23, 1135 (2007)CrossRefGoogle Scholar
  104. 104.
    A. Nakajo, Z. Wuillemin, J. Van Herle, D. Favrat, J. Power Sources 193, 203 (2009)CrossRefGoogle Scholar
  105. 105.
    T. Nagai, W. Ito, T. Sakon, J. Am. Ceram. Soc. 91, 303 (2008)Google Scholar
  106. 106.
    H. Yacabe, Y. Baba, T. Sakurai, M. Satoh, I. Hirosawa, Y. Yoda, J. Power Sources 131, 278 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.University of AveiroAveiroPortugal

Personalised recommendations