Relating Real Crowds with Virtual Crowds

  • Daniel Thalmann
  • Soraia Raupp Musse


This chapter describes some reflections concerning the challenge of capturing information from real crowds to relate it with virtual crowds. Three parts are discussed here: (i) a study undertaken on the motion and behavior of real crowds, where the goal is to identify some patterns of the behaviors of real people to be used subsequently in virtual crowds, (ii) discussion of a few sociological crowd aspects, and (iii) computer vision methods as automatic ways to capture information from real life to guide virtual crowds.


Video Sequence Virtual Agent Basic Behavior Crowd Event Dense Crowd 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [ALA*01]
    Ashida K., Lee S., Allbeck J., Sun H., Badler N., Metaxas D.: Pedestrians: Creating agent behaviors through statistical analysis of observation data. In Proceedings of IEEE Computer Animation (Seoul, Korea, 2001), pp. 84–92. Google Scholar
  2. [ARS06]
    Adam A., Rivlin E., Shimshoni I.: Robust fragments-based tracking using the integral histogram. In CVPR’06: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Washington, DC, USA, 2006), IEEE Computer Society, Los Alamitos, pp. 798–805. Google Scholar
  3. [Bel95]
    Benesch H.: Atlas de la Psicologie. Livre de Poche, Paris, 1995. Google Scholar
  4. [BJ03]
    Brogan D. C., Johnson N. L.: Realistic human walking paths. In Proceedings of Computer Animation and Social Agents 2003 (2003), IEEE Computer Society, Los Alamitos, pp. 94–101. CrossRefGoogle Scholar
  5. [BMB03]
    Braun A., Musse S., Bodmann L. O. B.: Modeling individual behaviors in crowd simulation. In Computer Animation and Social Agents (New Jersey, USA, May 2003), pp. 143–148. Google Scholar
  6. [BV99]
    Boghossian A. B., Velastin S. A.: Motion-based machine vision techniques for the management of large crowds. In IEEE International Conference on Electronics, Circuits and Systems (1999), vol. 2, pp. 961–964. Google Scholar
  7. [CC06]
    Cheng F., Chen Y.: Real time multiple objects tracking and identification based on discrete wavelet transform. Pattern Recognition 39, 6 (June 2006), 1126–1139. MATHCrossRefGoogle Scholar
  8. [CGPP03]
    Cucchiara R., Grana C., Piccardi M., Prati A.: Detecting moving objects, ghosts, and shadows in video streams. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 10 (October 2003), 1337–1342. CrossRefGoogle Scholar
  9. [Che04]
    Chenney S.: Flow tiles. In Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA’04) (2004), pp. 233–245. CrossRefGoogle Scholar
  10. [CMC02]
    Chien S.-Y., Ma S.-Y., Chen L.-G.: Efficient moving object segmentation algorithm using background registration technique. IEEE Transactions on Circuits and Systems for Video Technology 12, 7 (2002), 577–586. CrossRefGoogle Scholar
  11. [Dav05]
    Davies E.: Machine Vision: Theory, Algorithms, Practicalities, 3rd edn. Morgan Kaufmann, San Mateo, 2005. Google Scholar
  12. [DCXL06]
    Du Y., Chen G., Xu W., Li Y.: Recognizing interaction activities using dynamic Bayesian network. In IEEE International Conference on Pattern Recognition (August 2006), vol. 1, pp. 618–621. Google Scholar
  13. [DR02]
    Dodu F., Rabut C.: Vectorial interpolation using radial-basis-like functions. Computers & Mathematics with Applications 43, 3–5 (February–March 2002), 393–411. MATHCrossRefMathSciNetGoogle Scholar
  14. [EDHD02]
    Elgammal A., Duraiswami R., Harwood D., Davis L.: Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proceedings of the IEEE 90, 7 (2002), 1151–1163. CrossRefGoogle Scholar
  15. [FJ02]
    Figueiredo M. A. T., Jain A. K.: Unsupervised learning of finite mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 3 (March 2002), 381–396. CrossRefGoogle Scholar
  16. [FV06]
    Fuentes L., Velastin S.: People tracking in surveillance applications. Image and Vision Computing 24, 11 (November 2006), 1165–1171. CrossRefGoogle Scholar
  17. [GFK03]
    Grest D., Frahm J.-M., Koch R.: A color similarity measure for robust shadow removal in real time. In Vision, Modeling and Visualization (2003), pp. 253–260. Google Scholar
  18. [GX03]
    Gong S., Xiang T.: Recognition of group activities using dynamic probabilistic networks. In IEEE International Conference on Computer Vision (Washington, DC, USA, 2003), IEEE Computer Society, Los Alamitos, p. 742. CrossRefGoogle Scholar
  19. [HBJW05]
    Helbing D., Buzna L., Johansson A., Werner T.: Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions. Transportation Science 39, 1 (Feb. 2005), 1–24. CrossRefGoogle Scholar
  20. [HFV00]
    Helbing D., Farkas I., Vicsek T.: Simulating dynamical features of escape panic. Nature 407 (2000), 487–490. CrossRefGoogle Scholar
  21. [HHD00]
    Haritaoglu I., Harwood D., Davis L.: W4: Real-time surveillance of people and their activities. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 8 (August 2000), 809–830. CrossRefGoogle Scholar
  22. [HM97]
    Helbing D., Molnar P.: Self-organization phenomena in pedestrian crowds. In Self-Organization of Complex Structures: From Individual to Collective Dynamics (1997), Gordon & Breach, London, pp. 569–577. Google Scholar
  23. [Jef98]
    Jeffrey P.: Emerging Social Conventions: Personal Space and Privacy in Shared Virtual Worlds. Technical Report: CS 27-430 Project, 1998. Google Scholar
  24. [JJM06]
    Jacques J. C. S. Jr., Jung C. R., Musse S. R.: A background subtraction model adapted to illumination changes. In IEEE International Conference on Image Processing (2006), IEEE Press, New York, pp. 1817–1820. Google Scholar
  25. [JJS04]
    Junejo I., Javed O., Shah M.: Multi feature path modeling for video surveillance. In IEEE International Conference on Pattern Recognition (2004), vol. II, pp. 716–719. Google Scholar
  26. [KB03]
    KaewTrakulPong P., Bowden R.: A real time adaptive visual surveillance system for tracking low-resolution colour targets in dynamically changing scenes. Image and Vision Computing 21, 9 (September 2003), 913–929. CrossRefGoogle Scholar
  27. [LK81]
    Lucas B., Kanade T.: An iterative image registration technique with an application to stereo vision. In Proceedings of International Joint Conference on Artificial Intelligence (1981), pp. 674–679. Google Scholar
  28. [Low04]
    Lowe D. G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60, 2 (2004), 91–110. CrossRefGoogle Scholar
  29. [Man85]
    Mannoni P.: La Psychologie Collective. Presses Universitaires de France, Paris, 1985. Google Scholar
  30. [MaVK06]
    Moeslund T. B., Hilton A., Kruger V.: A survey of advances in vision-based human motion capture and analysis. Computer Vision and Image Understanding 104, 1 (October 2006), 90–126. CrossRefGoogle Scholar
  31. [MC95]
    Martin J., Crowley J. L.: Comparison of correlation techniques. In Conference on Intelligent Autonomous Systems (Karsluhe, Germany, March 1995). Google Scholar
  32. [McC89]
    McClelland J. S.: The Crowd and the Mob. Cambridge University Press, Cambridge, 1989. Google Scholar
  33. [ME05]
    Makris D., Ellis T.: Learning semantic scene models from observing activity in visual surveillance. IEEE Transactions on Systems, Man, and Cybernetics B 35, 3 (June 2005), 397–408. CrossRefGoogle Scholar
  34. [MH04]
    Metoyer R., Hodgins J.: Reactive pedestrian navigation from examples. The Visual Computer 10, 20 (2004), 635–649. CrossRefGoogle Scholar
  35. [MJD*00]
    McKenna S., Jabri S., Duric Z., Rosenfeld A., Wechsler H.: Tracking groups of people. Computer Vision and Image Understanding 80, 1 (October 2000), 42–56. MATHCrossRefGoogle Scholar
  36. [MT01]
    Musse S. R., Thalmann D.: A hierarchical model for real time simulation of virtual human crowds. IEEE Transactions on Visualization and Computer Graphics 7, 2 (April–June 2001), 152–164. CrossRefGoogle Scholar
  37. [NTWH04]
    Ning H., Tan T., Wang L., Hu W.: People tracking based on motion model and motion constraints with automatic initialization. Pattern Recognition 37, 7 (July 2004), 1423–1440. CrossRefGoogle Scholar
  38. [ORP00]
    Oliver N., Rosario B., Pentland A.: A Bayesian computer vision system for modeling human interactions. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 8 (August 2000), 831–843. CrossRefGoogle Scholar
  39. [PTL*04]
    Pai C.-J., Tyan H.-R., Liang Y.-M., Liao H.-Y. M., Chen S.-W.: Pedestrian detection and tracking at crossroads. Pattern Recognition 37, 5 (2004), 1025–1034. MATHCrossRefGoogle Scholar
  40. [PTM06]
    Porikli F., Tuzel O., Meer P.: Covariance tracking using model update based on Lie algebra. In IEEE Computer Vision and Pattern Recognition (2006), vol. I, pp. 728–735. Google Scholar
  41. [Rey99]
    Reynolds C. W.: Steering behaviors for autonomous characters. In Game Developers Conference (San Jose, California, USA, 1999), pp. 763–782. Google Scholar
  42. [Rol81]
    Roloff M. E.: Interpersonal Communication—The Social Exchange Approach. SAGE Publications, London, 1981. Google Scholar
  43. [SB05]
    Shoushtarian B., Bez H. E.: A practical adaptive approach for dynamic background subtraction using an invariant colour model and object tracking. Pattern Recognition Letters 26, 1 (2005), 91–99. CrossRefGoogle Scholar
  44. [SG99]
    Stauffer C., Grimson W.: Adaptive background mixture models for real-time tracking. In IEEE Computer Vision and Pattern Recognition (1999), vol. II, pp. 246–252. Google Scholar
  45. [ST94]
    Shi J., Tomasi C.: Good features to track. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR’94) (Seattle, June 1994). Google Scholar
  46. [TLH05]
    Tian Y., Lu M., Hampapur A.: Robust and efficient foreground analysis for real-time video surveillance. In IEEE Computer Vision and Pattern Recognition (2005), vol. I, pp. 1182–1187. Google Scholar
  47. [VV05]
    Valera M., Velastin S.: Intelligent distributed surveillance systems: A review. IEE Vision, Image and Signal Processing 152, 2 (April 2005), 192–204. CrossRefGoogle Scholar
  48. [WADP97]
    Wren C., Azarbayejani A., Darrell T., Pentland A.: Pfinder: Real-time tracking of the human body. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 7 (July 1997), 780–785. CrossRefGoogle Scholar
  49. [Wat92]
    Watson D. E.: Contouring: A Guide to the Analysis and Display of Spatial Data. Pergamon, Tarrytown, 1992. Google Scholar
  50. [WHT03]
    Wang L., Hu W., Tan T.: Recent developments in human motion analysis. Pattern Recognition 36 (2003), 585–601. CrossRefGoogle Scholar
  51. [WS03]
    Wang J. J., Singh S.: Video analysis of human dynamics: A survey. Real-Time Imaging 9, 5 (2003), 321–346. CrossRefGoogle Scholar
  52. [WTLW05]
    Wang Y., Tan T., Loe K., Wu J.: A probabilistic approach for foreground and shadow segmentation in monocular image sequences. Pattern Recognition 38, 11 (November 2005), 1937–1946. CrossRefGoogle Scholar
  53. [XLLY05]
    Xu D., Li X., Liu Z., Yuan Y.: Cast shadow detection in video segmentation. Pattern Recognition Letters 26, 1 (2005), 5–26. CrossRefGoogle Scholar
  54. [XP98]
    Xu C., Prince J.: Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing 7, 3 (March 1998), 359–369. MATHCrossRefMathSciNetGoogle Scholar
  55. [YLPL05]
    Yang T., Li S. Z., Pan Q., Li J.: Real-time multiple objects tracking with occlusion handling in dynamic scenes. In IEEE Computer Vision and Pattern Recognition (2005), pp. 970–975. Google Scholar
  56. [ZvdH06]
    Zivkovic Z., van der Heijden F.: Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognition Letters 27, 7 (May 2006), 773–780. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Daniel Thalmann
    • 1
    • 2
  • Soraia Raupp Musse
    • 3
  1. 1.Institute for Media InnovationNanyang Technological UniversitySingaporeSingapore
  2. 2.IC-DOEPFLLausanneSwitzerland
  3. 3.Graduate Course in Computer SciencePontifical Catholic University of Rio Grande do SulPorto AlegreBrazil

Personalised recommendations