Skip to main content

Virtual Human Animation

  • Chapter

Abstract

While designing an animation engine usable in crowd simulations, several criteria have to be taken into account: animation computation should be efficient and scalable, it should allow for variability, and it should be compatible with levels of detail. To understand the problems, let us take the most important animation pattern used in crowd simulation, as well as games, i.e., locomotion, basically composed of walking and running motions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Vicon Motion Systems. www.vicon.com, 2004.

  2. 2.

    H-ANIM. Humanoid Animation Working Group. www.hanim.org.

References

  1. Allen B., Curless B., Popovic Z.: Articulated body deformation from range scan data. ACM Transactions on Graphics 21, 3 (2002), 612–619.

    Article  Google Scholar 

  2. Arikan O., Forsyth D., O’Brien J.: Motion synthesis from annotations. In Proceedings of ACM SIGGRAPH (2003), pp. 402–408.

    Google Scholar 

  3. Alexa M., Mueller W.: Representing animations by principal components. In Proceedings of EG Eurographics (2000), pp. 411–426.

    Google Scholar 

  4. Amor H. B., Obst O., Murray J.: Fast, Neat and Under Control: Inverse Steering Behaviors for Physical Autonomous Agents. Research report, Institut für Informatik, Universität Koblenz-Landau, 2003.

    Google Scholar 

  5. Baerlocher P., Boulic R.: An inverse kinematic architecture enforcing an arbitrary number of strict priority levels. The Visual Computer 6, 20 (2004), 402–417.

    Google Scholar 

  6. Bruderlin A., Calvert T.: Interactive animation of personalized human locomotion. In Proceedings of Graphics Interface (1993), pp. 17–23.

    Google Scholar 

  7. Bruderlin A., Calvert T.: Knowledge-driven, interactive animation of human running. In Graphics Interface’96 (1996), pp. 213–221.

    Google Scholar 

  8. Brand M., Hertzmann A.: Style machines. In Proceedings of ACM SIGGRAPH (2000), pp. 183–192.

    Google Scholar 

  9. Brogan D. C., Johnson N. L.: Realistic human walking paths. In Proceedings of Computer Animation and Social Agents 2003 (2003), IEEE Computer Society, Los Alamitos, pp. 94–101.

    Chapter  Google Scholar 

  10. Boulic R.: Proactive steering toward oriented targets. In Proc. of EG Eurographics’05 (2005).

    Google Scholar 

  11. Boulic R.: Reaching oriented targets with funnelling trajectories. In Proc. of V-CROWDS’05 (2005).

    Google Scholar 

  12. Boulic R., Thalmann D.: Combined direct and inverse kinematic control for articulated figure motion editing. Computer Graphics Forum 2, 4 (1992), 189–202.

    Article  Google Scholar 

  13. Boulic R., Thalmann D., Magnenat-Thalmann N.: A global human walking model with real time kinematic personification. The Visual Computer 6, 6 (1990), 344–358.

    Article  Google Scholar 

  14. Boulic R., Ulicny B., Thalmann D.: Versatile walk engine. Journal of Game Development 1, 1 (2004), 29–52.

    Google Scholar 

  15. Bruderlin A., Williams L.: Motion signal processing. In Proceedings of ACM SIGGRAPH (1995), pp. 97–104.

    Google Scholar 

  16. Chung S., Hahn J.: Animation of human walking in virtual environments. In Proceedings of Computer Animation (1999).

    Google Scholar 

  17. Chestnutt J., Kuffner J.: A tiered planning strategy for biped navigation. In Proc. of IEEE Int. Conf. on Humanoid Robotics (Humanoids’04) (2004).

    Google Scholar 

  18. Dubins L.: On curves of minimal length with a constrain on average curvature and with prescribed initial and terminal positions and tangents. American Journal of Mathematics 79, 3 (1957), 497–516.

    Article  MATH  MathSciNet  Google Scholar 

  19. Egges A., Molet T., Magnenat-Thalmann N.: Personalised real-time idle motion synthesis. In Proceedings of Pacific Graphics (2004).

    Google Scholar 

  20. Fraichard T., Scheuer A.: From Reeds and Shepp’s to continuous-curvature paths. IEEE TRA 6, 20 (2004), 1025–1035.

    Google Scholar 

  21. Faloutsos P., van de Panne M., Terzopoulos D.: The virtual stuntman: Dynamic characters with a repertoire of autonomous motor skills. Computers & Graphics 6, 25 (2001), 933–953.

    Article  Google Scholar 

  22. Glardon P., Boulic R., Thalmann D.: Pca-based walking engine using motion capture data. In Proc. Computer Graphics International (2004), pp. 292–298.

    Google Scholar 

  23. Glardon P., Boulic R., Thalmann D.: Dynamic obstacle clearing for real-time character animation. The Visual Computer 6, 22 (2006), 399–414.

    Article  Google Scholar 

  24. Glardon P., Boulic R., Thalmann D.: Robust on-line adaptive footplant detection and enforcement for locomotion. The Visual Computer 3, 22 (2006), 194–209.

    Article  Google Scholar 

  25. Girard M.: Interactive design of 3-d computer-animated legged animal motion. In Proc. of ACM Symposium on Interactive 3D Graphics (1987), pp. 131–150.

    Google Scholar 

  26. Girard M., Maciejewski A.: Computational modeling for the computer animation of legged figures. In Proc. of ACM SIGGRAPH (1985), pp. 263–270.

    Google Scholar 

  27. Grochow K., Martin S., Hertzmann A., Popovic Z.: Style-based inverse kinematics. In Proceedings of ACM SIGGRAPH (2004).

    Google Scholar 

  28. Guo S., Robergé J.: A high-level control mechanism for human locomotion based on parametric frame space interpolation. In Proceedings of Eurographics Workshop on Computer Animation and Simulation 96 (1996), pp. 95–107.

    Chapter  Google Scholar 

  29. Grassia F.: Practical parameterization of rotations using the exponential map. The Journal of Graphics Tools 3, 3 (1998), 29–48.

    Article  Google Scholar 

  30. Go J., Thuc V., Kuffner J.: Autonomous behaviors for interactive vehicle animations. Graphical Models 68, 2 (2006), 90–112.

    Article  MATH  Google Scholar 

  31. Helbing D., Molnar P.: Social force model for pedestrian dynamics. Physical Review E 51 (1995), 4282–4286.

    Article  Google Scholar 

  32. Hodgins J., Pollard N.: Adapting simulated behaviors for new characters. In Proceedings of ACM SIGGRAPH (1997), pp. 153–162.

    Chapter  Google Scholar 

  33. Hodgins J., Wooten W., Brogan D., O’Brien J.: Animating human athletics. In SIGGRAPH’95: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques 29 (1995), pp. 71–78.

    Chapter  Google Scholar 

  34. Inmann V., Ralston H., Todd F.: Human Walking. Williams & Wilkins, Baltimore, 1981.

    Google Scholar 

  35. Ko H., Badler N.: Animating human locomotion with inverse dynamics. IEEE Computer Graphics and Applications 2, 16 (1996), 50–58.

    Google Scholar 

  36. Kovar T., Gleicher M.: Flexible automatic motion blending with registration curves. In Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2003), pp. 214–224.

    Google Scholar 

  37. Kovar L., Gleicher M.: Automated extraction and parameterization of motions in large data sets. ACM Transactions on Graphics 23, 3 (2004), 559–568.

    Article  Google Scholar 

  38. Kulpa R., Multon F., Arnaldi B.: Morphology-independent representation of motions for interactive human-like animations. In Proceedings of ACM SIGGRAPH (2005).

    Google Scholar 

  39. Lamiraux F., Laumond J.: Smooth motion planning for car-like vehicle. IEEE TRA 4, 17 (2001), 498–502.

    Google Scholar 

  40. Lim I., Thalmann D.: Construction of animation models out of captured data. In Proceedings of IEEE Conference Multimedia and Expo (2002).

    Google Scholar 

  41. Laszlo J., van de Panne M., Fiume E.: Limit cycle control and its application to the animation of balancing and walking. In Proceedings of ACM SIGGRAPH (1996), pp. 153–162.

    Google Scholar 

  42. Molet T., Boulic R., Thalmann D.: Human motion capture driven by orientation measurements. Presence 8 (1999), 187–203.

    Article  Google Scholar 

  43. Multon F., France L., Cani-Gascuel M.-P., Debunne G.: Computer animation of human walking: A survey. The Journal of Visualization and Computer Animation 1, 10 (1999), 39–54.

    Article  Google Scholar 

  44. Metoyer R., Hodgins J.: Reactive pedestrian navigation from examples. The Visual Computer 10, 20 (2004), 635–649.

    Article  Google Scholar 

  45. Mukai T., Kuriyama S.: Geostatistical motion interpolation. In Proceedings of ACM SIGGRAPH (2005), pp. 1062–1070.

    Google Scholar 

  46. Musse S. R., Thalmann D.: A hierarchical model for real time simulation of virtual human crowds. IEEE Transactions on Visualization and Computer Graphics 7, 2 (April–June 2001), 152–164.

    Article  Google Scholar 

  47. Murray M. P.: Gait as a total pattern of movement. American Journal of Physical Medicine 1, 46 (1967), 290–333.

    Google Scholar 

  48. Park S., hoon Kim T., Shin S. Y.: On-line Motion Blending for Real-Time Locomotion Generation. Technical report, Computer Science Department, KAIST, 2003.

    Google Scholar 

  49. Pettré J., Laumond J.-P.: A motion capture based control-space approach for walking mannequins. Computer Animation and Virtual Worlds 1, 16 (2005), 1–18.

    Google Scholar 

  50. Pettré J., Laumond J. P., Siméon T.: A 2-stages locomotion planner for digital actors. In SCA’03: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2003), pp. 258–264.

    Google Scholar 

  51. Park S., Shin H., Shin S.: On-line locomotion generation based on motion blending. In Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2002).

    Google Scholar 

  52. Rose C., Cohen M., Bodenheimer B.: Verbs and adverbs: Multidimensional motion interpolation. IEEE Computer Graphics and Applications 5, 18 (1998), 32–41.

    Article  Google Scholar 

  53. Reynolds C. W.: Steering behaviors for autonomous characters. In Game Developers Conference (San Jose, California, USA, 1999), pp. 763–782.

    Google Scholar 

  54. Raibert M. H., Hodgins J. K.: Animation of dynamic legged locomotion. In Proceedings of ACM SIGGRAPH (New York, NY, USA, 1991), ACM Press, New York, pp. 349–358.

    Google Scholar 

  55. Rose C., Sloan P.-P., Cohen M.: Artist-directed inverse-kinematics using radial basis function interpolation. In Proceedings of EG Eurographics (2001).

    Google Scholar 

  56. Safonova A., Hodgins J., Pollard N.: Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. In Proceedings of ACM SIGGRAPH (2004).

    Google Scholar 

  57. Sun H., Metaxas D.: Automating gait generation. In Proceedings of ACM SIGGRAPH (2001), pp. 213–221.

    Google Scholar 

  58. Sloan P.-P. J., Rose C. F., Cohen M. F.: Shape by example. In Symposium on Interactive 3D Graphics (2001), pp. 135–144.

    Google Scholar 

  59. Troje N.: Decomposing biological motion: A framework for analysis and synthesis of human gait patterns. Journal of Vision 2, 5 (2002), 371–387.

    Article  Google Scholar 

  60. Tsumura T., Yoshizuka T., Nojirino T., Noma T.: T4: A motion-capture-based goal directed real-time responsive locomotion engine. In Proceedings of Computer Animation (2001), pp. 52–60.

    Google Scholar 

  61. Unuma M., Anjyo K., Takeuchi R.: Fourier principles for emotion-based human figure. In Proceedings of ACM SIGGRAPH (1995), pp. 91–96.

    Google Scholar 

  62. Wooten W., Hodgins J.: Animation of human diving. Computer Graphics Forum 1, 15 (1996), 3–13.

    Article  Google Scholar 

  63. Wiley D., Hahn J.: Interpolation synthesis of articulated figure motion. IEEE Computer Graphics and Applications 6, 17 (1997), 39–45.

    Article  Google Scholar 

  64. Wooten W., Hodgins J.: Simulating leaping, tumbling, landing and balancing humans. In Proceedings of IEEE International Conference on Robotics and Automation (2000).

    Google Scholar 

  65. Zeltzer D.: Motor control techniques for figure animation. IEEE Computer Graphics and Applications 2, 9 (1982), 53–59.

    Article  Google Scholar 

  66. Zeltzer D.: Knowledge-based animation. In ACM SIGGRAPH/SIGART, Workshop on Motion (1983), pp. 187–192.

    Google Scholar 

  67. Zordan V., Hodgins J.: Motion capture-driven simulations that hit and react. In Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2002), pp. 89–96.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Thalmann, D., Musse, S.R. (2013). Virtual Human Animation. In: Crowd Simulation. Springer, London. https://doi.org/10.1007/978-1-4471-4450-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4450-2_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4449-6

  • Online ISBN: 978-1-4471-4450-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics