Skip to main content

The Role of Coronary Computed Tomography Angiography in Cardiology Consultation

  • Chapter
  • First Online:
Book cover Evidence-Based Cardiology Consult

Abstract

Cardiac computed tomography (CCT) has rapidly become an integral part of noninvasive diagnostic cardiovascular imaging. Coronary artery calcium scoring using either electronic beam computed tomography (CT) or multidetector row CT is useful in the reclassification of coronary artery disease (CAD) risk when combined with the clinical CAD risk scoring in asymptomatic individuals. Coronary computed tomography angiography (CCTA) has a very high negative predictive value for ruling out the presence of significant obstructive CAD in symptomatic patients with either chronic or acute chest pain. Newer generation of scanners and software algorithms allows CCT studies to be performed easily in more patients with much lower effective radiation exposure. CCTA allows infinite viewing angle of the heart and its associated vascular structure retrospectively and is thus an invaluable and unique diagnostic tool for the assessment of cardiac structure and morphology prior to invasive procedures. Moreover, CCT aids in the diagnosis and management of patients with complex congenital heart disease and suspected coronary anomalies. It often obviates the need for invasive coronary angiography prior to noncoronary cardiac surgery and early post-coronary artery bypass grafting or coronary stenting for evaluation of the patency of native, grafted, or stented coronary vessels. Novel research applications of CCTA in the assessment of stress and rest myocardial perfusion, cardiac viability, and atherosclerotic plaque imaging may further open the window of opportunity for CCT to be the ultimate multipurpose diagnostic imaging modality of the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greenland P, Bonow RO, Brundage BH, et al. ACCF/AHA 2007 clinical expert consensus document on coronary artery calcium scoring by computed tomography in global cardiovascular risk assessment and in evaluation of patients with chest pain: a report of the American College of Cardiology Foundation Clinical Expert Consensus Task Force (ACCF/AHA writing committee to update the 2000 expert consensus document on electron beam computed tomography) developed in collaboration with the Society of Atherosclerosis Imaging and Prevention and the Society of Cardiovascular Computed Tomography. J Am Coll Cardiol. 2007;49(3):378–402.

    Article  PubMed  Google Scholar 

  2. Taylor AJ, Cerqueira M, Hodgson JM, et al. ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. J Am Coll Cardiol. 2010;56(22):1864–94.

    Article  PubMed  Google Scholar 

  3. Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation, National Research Council. Health risks from exposure to low levels of ionizing radiation: BEIR VII phase 2. Washington, DC: The National Academies Press; 2006.

    Google Scholar 

  4. Bischoff B, Hein F, Meyer T, et al. Impact of a reduced tube voltage on CT angiography and radiation dose: results of the PROTECTION I study. JACC Cardiovasc Imaging. 2009;2(8):940–6.

    Article  PubMed  Google Scholar 

  5. Hausleiter J, Meyer T, Hermann F, et al. Estimated radiation dose associated with cardiac CT angiography. JAMA. 2009;301(5):500–7.

    Article  PubMed  CAS  Google Scholar 

  6. Einstein AJ, Moser KW, Thompson RC, Cerqueira MD, Henzlova MJ. Radiation dose to patients from cardiac diagnostic imaging. Circulation. 2007;116(11):1290–305.

    Article  PubMed  Google Scholar 

  7. Einstein AJ, Elliston CD, Arai AE, Chen MY, Mather R, Pearson GD, Delapaz RL, Nickoloff E, Dutta A, Brenner DJ. Radiation dose from single-heartbeat coronary CT angiography performed with a 320-detector row volume scanner. Radiology. 2010;254(3):698–706.

    Article  PubMed  Google Scholar 

  8. Raff Gl Chinnaiyan KM, Share DA, et al. Radiation dose from cardiac computed tomography before and after implementation of radiation dose–reduction techniques. JAMA. 2009;301(22):2340–8.

    Article  Google Scholar 

  9. Hausleiter J, Meyer TS, Martuscelli E, et al. Image quality and radiation exposure with prospectively ECG-triggered axial scanning for coronary CT angiography: the multicenter, multivendor. Randomized PROTECTION-III study. JACC Cardiovasc Imaging. 2012;5(5):484–93.

    Article  PubMed  Google Scholar 

  10. Husmann L, Herzog BA, Gaemperli O, Tatsugami F, Burkhard N, Valenta I, Veit-Haibach P, Wyss CA, Landmesser U, Kaufmann PA. Diagnostic accuracy of computed tomography coronary angiography and evaluation of stress-only single-photon emission computed tomography/computed tomography hybrid imaging: comparison of prospective electrocardiogram-triggering vs. retrospective gating. Eur Heart J. 2009;30(5):600–7.

    Article  PubMed  Google Scholar 

  11. Mayo JR, Leipsic JA. Radiation dose in cardiac CT. AJR Am J Roentgenol. 2009;192(3):646–53.

    Article  PubMed  Google Scholar 

  12. Rumberger JA, Brundage BH, Rader DJ, Kondos G. Electron beam computed tomographic coronary calcium scanning: a review and guidelines for use in asymptomatic persons. Mayo Clin Proc. 1999;74(3):243–52.

    Article  PubMed  CAS  Google Scholar 

  13. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte Jr M, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990;15(4):827–32.

    Article  PubMed  CAS  Google Scholar 

  14. Morin RL, Gerber TC, McCollough CH. Radiation dose in computed tomography of the heart. Circulation. 2003;107(6):917–22.

    Article  PubMed  Google Scholar 

  15. Horiguchi J, Yamamoto H, Akiyama Y, Marukawa K, Hirai N, Ito K. Coronary artery calcium scoring using 16-MDCT and a retrospective ECG-gating reconstruction algorithm. AJR Am J Roentgenol. 2004;183(1):103–8.

    Article  PubMed  Google Scholar 

  16. Berman DS, Wong ND, Gransar H, et al. Relationship between stress-induced myocardial ischemia and atherosclerosis measured by coronary calcium tomography. J Am Coll Cardiol. 2004;44(4):923–30.

    Article  PubMed  CAS  Google Scholar 

  17. Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation. 1998;97(18):1837–47.

    Article  PubMed  CAS  Google Scholar 

  18. Vliegenthart R, Oudkerk M, Hofman A, Oei HH, van Dijck W, van Rooij FJ, Witteman JC. Coronary calcification improves cardiovascular risk prediction in the elderly. Circulation. 2005;112(4):572–7.

    Article  PubMed  Google Scholar 

  19. Detrano R, Guerci AD, Carr JJ, Bild DE, Burke G, Folsom AR, Liu K, Shea S, Szklo M, Bluemke DA, O’Leary DH, Tracy R, Watson K, Wong ND, Kronmal RA. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008;358(13):1336–45.

    Article  PubMed  CAS  Google Scholar 

  20. Schmermund A, Baumgart D, Gorge G, et al. Coronary artery calcium in acute coronary syndromes: a comparative study of electron-beam computed tomography, coronary angiography, and intracoronary ultrasound in survivors of acute myocardial infarction and unstable angina. Circulation. 1997;96(5):1461–9.

    Article  PubMed  CAS  Google Scholar 

  21. Budoff MJ, Shavelle DM, Lamont DH, et al. Usefulness of electron beam computed tomography scanning for distinguishing ischemic from nonischemic cardiomyopathy. J Am Coll Cardiol. 1998;32(5):1173–8.

    Article  PubMed  CAS  Google Scholar 

  22. Le T, Ko JY, Kim HT, Akinwale P, Budoff MJ. Comparison of echocardiography and electron beam tomography in differentiating the etiology of heart failure. Clin Cardiol. 2000;23(6):417–20.

    Article  PubMed  CAS  Google Scholar 

  23. Budoff MJ, Achenbach S, Blumenthal RS, et al. Assessment of coronary artery disease by cardiac computed tomography: a scientific statement from the American Heart Association Committee on Cardiovascular Imaging and Intervention, Council on Cardiovascular Radiology and Intervention, and Committee on Cardiac Imaging, Council on Clinical Cardiology. Circulation. 2006;114(16):1761–91.

    Article  PubMed  Google Scholar 

  24. McClelland RL, Chung H, Detrano R, Post W, Kronmal RA. Distribution of coronary artery calcium by race, gender, and age: results from the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation. 2006;113(1):30–7.

    Article  PubMed  Google Scholar 

  25. Nasir K, Shaw LJ, Liu ST, Weinstein SR, Mosler TR, Flores PR, Flores FR, Raggi P, Berman DS, Blumenthal RS, Budoff MJ. Ethnic differences in the prognostic value of coronary artery calcification for all-cause mortality. J Am Coll Cardiol. 2007;50(10):953–60.

    Article  PubMed  Google Scholar 

  26. Lu B, Budoff MJ, Zhuang N, Child J, Bakhsheshi H, Carson S, Mao SS. Causes of interscan variability of coronary artery calcium measurements at electron-beam CT. Acad Radiol. 2002;9(6):654–61.

    Article  PubMed  Google Scholar 

  27. Waugh N, Black C, Walker S, McIntyre L, Cummins E, Hillis G. The effectiveness and cost-effectiveness of computed tomography screening for coronary artery disease: systematic review. Health Technol Assess. 2006;10(39):iii–iv, ix–x, 1–41.

    CAS  Google Scholar 

  28. Hoffmann U, Nagurney JT, Moselewski F, Pena A, Ferencik M, Chae CU, Cury RC, Butler J, Abbara S, Brown DF, Manini A, Nichols JH, Achenbach S, Brady TJ. Coronary multidetector computed tomography in the assessment of patients with acute chest pain. Circulation. 2006;114(21):2251–60.

    Article  PubMed  Google Scholar 

  29. Meijboom WB, Mollet NR, Van Mieghem CA, Weustink AC, Pugliese F, van Pelt N, Cademartiri F, Vourvouri E, de Jaegere P, Krestin GP, de Feyter PJ. 64-Slice CT coronary angiography in patients with non-ST elevation acute coronary syndrome. Heart. 2007;93(11):1386–92.

    Article  PubMed  Google Scholar 

  30. Rubinshtein R, Halon DA, Gaspar T, Jaffe R, Goldstein J, Karkabi B, Flugelman MY, Kogan A, Shapira R, Peled N, Lewis BS. Impact of 64-slice cardiac computed tomographic angiography on clinical decision-making in emergency department patients with chest pain of possible myocardial ischemic origin. Am J Cardiol. 2007;100(10):1522–6.

    Article  PubMed  Google Scholar 

  31. Hollander JE, Chang AM, Shofer FS, Collin MJ, Walsh KM, McCusker CM, Baxt WG, Litt HI. One-year outcomes following coronary computerized tomographic angiography for evaluation of emergency department patients with potential acute coronary syndrome. Acad Emerg Med. 2009;16(8):693–8.

    Article  PubMed  Google Scholar 

  32. Goldstein JA, Gallagher MJ, O’Neill WW, Ross MA, O’Neil BJ, Raff GL. A randomized controlled trial of multi-slice coronary computed tomography for evaluation of acute chest pain. J Am Coll Cardiol. 2007;49(8):863–71.

    Article  PubMed  Google Scholar 

  33. Goldstein JA, Chinnaiyan KM, Abidov A, Achenbach S, Berman DS, Hayes SW, Hoffmann U, Lesser JR, Mikati IA, O’Neil BJ, Shaw LJ, Shen MY, Valeti US, Raff GL. The CT-STAT (coronary computed tomographic angiography for systematic triage of acute chest pain patients to treatment) trial. J Am Coll Cardiol. 2011;58(14):1414–22.

    Article  PubMed  Google Scholar 

  34. Hoffmann U, Truong QA, Schoenfeld DA, et al. Coronary CT angiography versus standard evaluation in acute chest pain. N Engl J Med. 2012;367(4):299–308.

    Article  PubMed  CAS  Google Scholar 

  35. Litt HI, Gatsonis C, Snyder B, et al. CT angiography for safe discharge of patients with possible acute coronary syndromes. N Engl J Med. 2012;366(15):1393–403.

    Article  PubMed  CAS  Google Scholar 

  36. Gruettner J, Fink C, Walter T, Meyer M, Apfaltrer P, Schoepf UJ, Saur J, Sueselbeck T, Traunwieser D, Takx R, Kralev S, Borggrefe M, Schoenberg SO, Henzler T. Coronary computed tomography and triple rule out CT in patients with acute chest pain and an intermediate cardiac risk profile. Part 1: impact on patient management. Eur J Radiol. 2013;82:100–5.

    Article  PubMed  Google Scholar 

  37. Haïssaguerre M, Jaïs P, Shah DC, et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med. 1998;339(10):659–66.

    Article  PubMed  Google Scholar 

  38. Kistler PM, Rajappan KIM, Jahngir M, et al. The impact of CT image integration into an electroanatomic mapping system on clinical outcomes of catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 2006;17(10):1093–101.

    Article  PubMed  Google Scholar 

  39. Kistler PM, Earley MJ, Harris S, et al. Validation of three-dimensional cardiac image integration: use of integrated CT image into electroanatomic mapping system to perform catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 2006;17(4):341–8.

    Article  PubMed  Google Scholar 

  40. Angelini P, Velasco JA, Flamm S. Coronary anomalies: incidence, pathophysiology, and clinical relevance. Circulation. 2002;105(20):2449–54.

    Article  PubMed  Google Scholar 

  41. Frescura C, Basso C, Thiene G, et al. Anomalous origin of coronary arteries and risk of sudden death: a study based on an autopsy population of congenital heart disease. Hum Pathol. 1998;29(7):689–95.

    Article  PubMed  CAS  Google Scholar 

  42. Eckart RE, Scoville SL, Campbell CL, et al. Sudden death in young adults: a 25-year review of autopsies in military recruits. Ann Intern Med. 2004;141(11):829–34.

    Article  PubMed  Google Scholar 

  43. Tariq R, Kureshi SB, Siddiqui UT, Ahmed R. Congenital anomalies of coronary arteries: diagnosis with 64 slice multidetector CT. Eur J Radiol. 2012;81(8):1790–7.

    Article  PubMed  Google Scholar 

  44. Datta J, White CS, Gilkeson RC, et al. Anomalous coronary arteries in adults: depiction at multi–detector row CT angiography. Radiology. 2005;235(3):812–8.

    Article  PubMed  Google Scholar 

  45. Schmitt R, Froehner S, Brunn J, et al. Congenital anomalies of the coronary arteries: imaging with contrast-enhanced, multidetector computed tomography. Eur Radiol. 2005;15(6):1110–21.

    Article  PubMed  Google Scholar 

  46. Angelini P. Coronary artery anomalies: an entity in search of an identity. Circulation. 2007;115(10):1296–305.

    PubMed  Google Scholar 

  47. Ihekwaba FN, Davidson KG, Ogilvie B, Caves PK. Anomalous origin of the left coronary artery from the pulmonary artery with coronary artery steal in adults. Report of two cases and review of the literature. Thorax. 1976;31(3):337–45.

    Article  PubMed  CAS  Google Scholar 

  48. Werner B, Wróblewska-Kałuzewska M, Pleskot M, Tarnowska A, Potocka K. Anomalies of the coronary arteries in children. Med Sci Monit. 2001;7(6):1285–91.

    PubMed  CAS  Google Scholar 

  49. Ayalp R, Mavi A, Serçelik A, Batyraliev T, Gümüsburun E. Frequency in the anomalous origin of the right coronary artery with angiography in a Turkish population. Int J Cardiol. 2002;82(3):253–7.

    Article  PubMed  Google Scholar 

  50. Cieslinski G, Rapprich B, Kober G. Coronary anomalies: incidence and importance. Clin Cardiol. 1993;16(10):711–5.

    Article  PubMed  CAS  Google Scholar 

  51. Thej MJ, Kalyani R, Kiran J. Atherosclerosis and myocardial bridging: not a benign combination. An autopsy case report. J Cardiovasc Dis Res. 2012;3(2):176–8.

    Article  PubMed  CAS  Google Scholar 

  52. Gupta NC, Beauvais J. Physiologic assessment of coronary artery fistula. Clin Nucl Med. 1991;16(1):40–2.

    Article  PubMed  CAS  Google Scholar 

  53. Ata Y, Turk T, Bicer M, Yalcin M, Ata F, Yavuz S. Coronary arteriovenous fistulas in the adults: natural history and management strategies. J Cardiothorac Surg. 2009;4:62.

    Article  PubMed  Google Scholar 

  54. Kilner PJ. Imaging congenital heart disease in adults. Br J Radiol. 2011;84(Spec no 3):S258–68.

    Article  PubMed  Google Scholar 

  55. Stinn B, Stolzmann P, Fornaro J, Hibbeln D, Alkadhi H, Wildermuth S, Leschka S. Technical principles of computed tomography in patients with congenital heart disease. Insights Imaging. 2011;2(3):349–56.

    Article  PubMed  Google Scholar 

  56. Anand DV, Lim E, Lipkin D, Lahiri A. Evaluation of graft patency by computed tomographic angiography in symptom-free post-coronary artery bypass surgery patients. J Nucl Cardiol. 2008;15(2):201–8.

    Article  PubMed  Google Scholar 

  57. Meyer TS, Martinoff S, Hadamitzky M, et al. Improved noninvasive assessment of coronary artery bypass grafts with 64-slice computed tomographic angiography in an unselected patient population. J Am Coll Cardiol. 2007;49(9):946–50.

    Article  PubMed  Google Scholar 

  58. Ropers D, Pohle FK, Kuettner A, et al. Diagnostic accuracy of noninvasive coronary angiography in patients after bypass surgery using 64-slice spiral computed tomography with 330-ms gantry rotation. Circulation. 2006;114(22):2334–41; quiz 2334.

    Article  PubMed  Google Scholar 

  59. Gaudino M, Cellini C, Pragliola C, et al. Arterial versus venous bypass grafts in patients with in-stent restenosis. Circulation. 2005;112(9 Suppl):I265–9.

    PubMed  Google Scholar 

  60. Cai W. 3D planar reformation of vascular central axis surface with biconvex slab. Comput Med Imaging Graph. 2007;31(7):570–6.

    Article  PubMed  Google Scholar 

  61. Onuma Y, Tanabe K, Chihara R, et al. Evaluation of coronary artery bypass grafts and native coronary arteries using 64-slice multidetector computed tomography. Am Heart J. 2007;154(3):519–26.

    Article  PubMed  Google Scholar 

  62. Weustink AC, Nieman K, Pugliese F, et al. Diagnostic accuracy of computed tomography angiography in patients after bypass grafting: comparison with invasive coronary angiography. JACC Cardiovasc Imaging. 2009;2(7):816–24.

    Article  PubMed  Google Scholar 

  63. Chung SH, Kim YJ, Hur J, et al. Evaluation of coronary artery in-stent restenosis by 64-section computed tomography: factors affecting assessment and accurate diagnosis. J Thorac Imaging. 2010;25(1):57–63.

    Article  PubMed  Google Scholar 

  64. Schuijf JD, Pundziute G, Jukema JW, et al. Evaluation of patients with previous coronary stent implantation with 64-section CT. Radiology. 2007;245(2):416–23.

    Article  PubMed  Google Scholar 

  65. de Graaf FR, Schuijf JD, van Velzen JE, et al. Diagnostic accuracy of 320-row multidetector computed tomography coronary angiography to noninvasively assess in-stent restenosis. Invest Radiol. 2010;45(6):331–40.

    PubMed  Google Scholar 

  66. Maintz D, Grude M, Fallenberg EM, Heindel W, Fischbach R. Assessment of coronary arterial stents by multislice-CT angiography. Acta Radiol. 2003;44(6):597–603.

    PubMed  CAS  Google Scholar 

  67. Blankstein R, Shturman LD, Rogers IS, et al. Adenosine-induced stress myocardial perfusion imaging using dual-source cardiac computed tomography. J Am Coll Cardiol. 2009;54(12):1072–84.

    Article  PubMed  Google Scholar 

  68. George RT, Arbab-Zadeh A, Miller JM, et al. Computed tomography myocardial perfusion imaging with 320-row detector computed tomography accurately detects myocardial ischemia in patients with obstructive coronary artery disease. Circ Cardiovasc Imaging. 2012;5(3):333–40.

    Article  PubMed  Google Scholar 

  69. George RT, Arbab-Zadeh A, Miller JM, et al. Adenosine stress 64- and 256-row detector computed tomography angiography and perfusion imaging: a pilot study evaluating the transmural extent of perfusion abnormalities to predict atherosclerosis causing myocardial ischemia. Circ Cardiovasc Imaging. 2009;2(3):174–82.

    Article  PubMed  Google Scholar 

  70. Leber AW, Becker A, Knez A, von Ziegler F, Sirol M, Nikolaou K, Ohnesorge B, Fayad ZA, Becker CR, Reiser M, Steinbeck G, Boekstegers P. Accuracy of 64-slice computed tomography to classify and quantify plaque volumes in the proximal coronary system: a comparative study using intravascular ultrasound. J Am Coll Cardiol. 2006;47(3):672–7.

    Article  PubMed  Google Scholar 

  71. Brodoefel H, Burgstahler C, Heuschmid M, Reimann A, Khosa F, Kopp A, Schroeder S, Claussen CD, Clouse ME. Accuracy of dual-source CT in the characterisation of non-calcified plaque: use of a colour-coded analysis compared with virtual histology intravascular ultrasound. Br J Radiol. 2009;82(982):805–12.

    Article  PubMed  CAS  Google Scholar 

  72. Hausleiter J, Meyer T, Hadamitzky M, Kastrati A, Martinoff S, Schomig A. Prevalence of noncalcified coronary plaques by 64-slice computed tomography in patients with an intermediate risk for significant coronary artery disease. J Am Coll Cardiol. 2006;48(2):312–8.

    Article  PubMed  Google Scholar 

  73. Voros S, Rinehart S, Qian Z, et al. Prospective validation of standardized, 3-dimensional, quantitative coronary computed tomographic plaque measurements using radiofrequency backscatter intravascular ultrasound as reference standard in intermediate coronary arterial lesions: results from the ATLANTA (assessment of tissue characteristics, lesion morphology, and hemodynamics by angiography with fractional flow reserve, intravascular ultrasound and virtual histology, and noninvasive computed tomography in atherosclerotic plaques) I study. JACC Cardiovasc Interv. 2011;4(2):198–208.

    Article  PubMed  Google Scholar 

  74. Pohle K, Achenbach S, Macneill B, Ropers D, Ferencik M, Moselewski F, Hoffmann U, Brady TJ, Jang IK, Daniel WG. Characterization of non-calcified coronary atherosclerotic plaque by multi-detector row CT: comparison to IVUS. Atherosclerosis. 2007;190(1):174–80.

    Article  PubMed  CAS  Google Scholar 

  75. Hoffmann U, Moselewski F, Nieman K, Jang IK, Ferencik M, Rahman AM, Cury RC, Abbara S, Joneidi-Jafari H, Achenbach S, Brady TJ. Noninvasive assessment of plaque morphology and composition in culprit and stable lesions in acute coronary syndrome and stable lesions in stable angina by multidetector computed tomography. J Am Coll Cardiol. 2006;47(8):1655–62.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Poon MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Lin, C.T., Abramowicz, A.J., Poon, M. (2014). The Role of Coronary Computed Tomography Angiography in Cardiology Consultation. In: Stergiopoulos, K., Brown, D. (eds) Evidence-Based Cardiology Consult. Springer, London. https://doi.org/10.1007/978-1-4471-4441-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4441-0_15

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4440-3

  • Online ISBN: 978-1-4471-4441-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics