Platelet Activation After Lung Transplantation



Initially recognized for their central role in thrombosis, there has been an emerging understanding that platelets also play an important role in both the innate as well as the adaptive immune response. The profound impact and putative role of platelet activation in both acute and chronic allograft failure after lung transplant are just beginning to be truly appreciated. To understand this multifactorial interaction, one must first understand the basics of platelet physiology.


Acute Lung Injury Platelet Activation Lung Transplant Primary Pulmonary Hypertension Platelet Deposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bonfanti R, Furie BC, Furie B, Wagner DD. PADGEM (GMP140) is a component of Weibel Palade bodies of human endothelial cells. Blood. 1989;73:1109–12.PubMedGoogle Scholar
  2. 2.
    Coppinger JA CG, Toomey S, Kislinger T, Belton O, McRedmond JP, Cahill DJ, et al. Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions. Blood. 2004;103:2096–104.PubMedCrossRefGoogle Scholar
  3. 3.
    Italiano Jr JE, Battinelli EM. Selective sorting of alpha-granule ­proteins. J Thromb Haemost. 2009;7 Suppl 1:173–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Brandt E, Ludwig A, Petersen F, Flad HD. Platelet-derived CXC chemokines: old players in new games. Immunol Rev. 2000;177:204–16.PubMedCrossRefGoogle Scholar
  5. 5.
    Power CA, Furness RB, Brawand C, Wells TN. Cloning of a full-length cDNA encoding the neutrophil-activating peptide ENA-78 from human platelets. Gene. 1994;151:333–4.PubMedCrossRefGoogle Scholar
  6. 6.
    Ravindran R, Krishnan LK. A biochemical study on the effect of proteolysis of beta-thromboglobulin proteins released from activated platelets on fibroblast proliferation. Pathophysiol Haemost Thromb. 2007;36:285–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Resmi KR, Krishnan LK. Protease action and generation of beta-thromboglobulin-like protein followed by platelet activation. Thromb Res. 2002;107:23–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Kasper B, Brandt E, Bulfone-Paus S, Petersen F. Platelet factor 4 (PF-4)-induced neutrophil adhesion is controlled by src-kinases, whereas PF-4-mediated exocytosis requires the additional activation of p38 MAP kinase and phosphatidylinositol 3-kinase. Blood. 2003;103:1602–10.PubMedCrossRefGoogle Scholar
  9. 9.
    Petersen F, Bock L, Flad HD, Brandt E. Platelet factor 4-induced neutrophil-endothelial cell interaction: involvement of mechanisms and functional consequences different from those elicited by interleukin-8. Blood. 1999;94:4020–8.PubMedGoogle Scholar
  10. 10.
    Hawrylowicz CM, Santoro SA, Platt FM, Unanue ER. Activated platelets express IL-1 activity. J Immunol. 1989;143:4015–8.PubMedGoogle Scholar
  11. 11.
    Hawrylowicz CM HG, Feldmann M. Platelet-derived interleukin 1 induces human endothelial adhesion molecule expression and cytokine production. J Exp Med. 1991;174:785–90.PubMedCrossRefGoogle Scholar
  12. 12.
    Kameyoshi Y, Dörschner A, Mattel AI, Christopher E, Schroder JM. Cytokine RANTES released by thrombin-stimulated platelets is a potent attractant for human eosinophils. J Exp Med. 1992;176:587–92.PubMedCrossRefGoogle Scholar
  13. 13.
    Klinger MH WD, Bubel S, Sticherling M, Schröder JM, Kühnel W. Immunocytochemical localization of the chemokines RANTES and MIP-1 alpha within human platelets and their release during storage. Int Arch Allergy Immunol. 1995;107:541–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Schober A, Zernecke A, Liehn EA, von Hundelshausen P, Knarren S, Kuziel WA, et al. Crucial role of the CCL2/CCR2 axis in neointimal hyperplasia after arterial injury in hyperlipidemic mice involves early monocyte recruitment and CCL2 presentation on platelets. Circ Res. 2004;95:1125–33.PubMedCrossRefGoogle Scholar
  15. 15.
    Ashby B, Daniel J, Smith JB. Mechanisms of platelet activation and inhibition. Hematol Oncol Clin North Am. 1990;4:1–26.PubMedGoogle Scholar
  16. 16.
    Li Z, Delaney M, O’Brien KA, Du X. Signaling during platelet adhesion and activation. Arterioscler Thromb Vasc Biol. 2010;30:2341–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Offermanns S. Activation of platelet function through G protein-coupled receptors. Circ Res. 2006;99:1293–304.PubMedCrossRefGoogle Scholar
  18. 18.
    Tadokoro S, Shattil SJ, Eto K, Tai V, Liddington RC, de Pereda JM, et al. Talin binding to integrin beta tails: a final common step in integrin activation. Science. 2003;302:103–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Moser M, Nieswandt B, Ussar S, Pozgajova M, Fässler R. Kindlin-3 is essential for integrin activation and platelet aggregation. Nat Med. 2008;14:325–30.PubMedCrossRefGoogle Scholar
  20. 20.
    Leisner TM, Wencel-Drake J, Wang W, Lam SC. Bidirectional transmembrane modulation of integrin alphaIIbbeta3 conformations. J Biol Chem. 1999;274:12945–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Li JM, Podolsky RS, Rohrer MJ, Cutler BS, Massie MT, Barnard MR, et al. Adhesion of activated platelets to venous endothelial cells is mediated via GPIIb/IIIa. J Surg Res. 1996;61:543–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Bombeli T, Schwartz BR, Harlan JM. Adhesion of activated platelets to endothelial cells: evidence for a GPIIbIIIa-dependent bridging mechanism and novel roles for endothelial intercellular adhesion molecule 1 (ICAM-1), alphavbeta3 integrin, and GPIbalpha. J Exp Med. 1998;187:329–39.PubMedCrossRefGoogle Scholar
  23. 23.
    Clemetson KJ, Clemetson JM. Platelet collagen receptors. Thromb Haemost. 2001;86:189–97.PubMedGoogle Scholar
  24. 24.
    Ezumi Y, Shindoh K, Tsuji M, Takayama H. Physical and functional association of the Src family kinases Fyn and Lyn with the collagen receptor glycoprotein VI-Fc receptor gamma chain complex on human platelets. J Exp Med. 1998;188:267–76.PubMedCrossRefGoogle Scholar
  25. 25.
    Arya M, López JA, Romo GM, Cruz MA, Kasirer-Friede A, Shattil SJ, et al. Glycoprotein Ib-IX-mediated activation of integrin alpha(IIb)beta(3): effects of receptor clustering and von Willebrand factor adhesion. J Thromb Haemost. 2003;1:1150–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Du X. Signaling and regulation of the platelet glycoprotein Ib-IX-V complex. Curr Opin Hematol. 2007;14(3):262–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Yang J, Furie BC, Furie B. The biology of P-selectin glycoprotein ligand-1: its role as a selectin counterreceptor in leukocyte-­endothelial and leukocyte-platelet. Thromb Haemost. 1999;81:1–7.PubMedGoogle Scholar
  28. 28.
    Diacovo TG, Roth SJ, Buccola JM, Bainton DF, Springer TA. Neutrophil rolling, arrest, and transmigration across activated, ­surface-adherent platelets via sequential action of P-selectin and the beta 2-integrin CD11b/CD18. Blood. 1996;183:1193–203.Google Scholar
  29. 29.
    Palabrica T, Lobb R, Furie BC, Aronivitz M, Benjamin C, Hsu Y-M, et al. Leukocyte accumulation promoting fibrin deposition is mediated in vivo by P-selectin on adherent platelets. Nature. 1992;359:848–51.PubMedCrossRefGoogle Scholar
  30. 30.
    Cognasse F, Hamzeh H, Chavarin P, Acquart S, Genin C, Garraud O. Evidence of Toll-like receptor molecules on human platelets. Immunol Cell Biol. 2005;83:196–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Aslam R, Speck ER, Kim M, Crow AR, Bang KW, Nestel FP, et al. Platelet Toll-like receptor expression modulates lipopolysaccharide-induced thrombocytopenia and tumor necrosis factor-alpha production in vivo. Blood. 2006;107:637–41.PubMedCrossRefGoogle Scholar
  32. 32.
    Cox D, Kerrigan S, Watson SP. Platelets and the innate immune system: mechanisms of bacterial-induced platelet activation. J Thromb Haemost. 2011;9:1097–107.PubMedCrossRefGoogle Scholar
  33. 33.
    Dixon DA, Tolley ND, Bemis-Standoli K, Martinez ML, Weyrich AS, Morrow JD, et al. Expression of COX-2 in platelet-monocyte interactions occurs via combinatorial regulation involving adhesion and cytokine signaling. J Clin Invest. 2006;116:2727–38.PubMedGoogle Scholar
  34. 34.
    da Costa Martins PA, van Gils JM, Mol A, Hordijk PL, Zwaginga JJ. Platelet binding to monocytes increases the adhesive properties of monocytes by up-regulating the expression and functionality of beta1 and beta2 integrins. J Leukoc Biol. 2006;79:499–507.PubMedCrossRefGoogle Scholar
  35. 35.
    Weyrich AS MT, McEver RP, Prescott SM, Zimmerman GA. Monocyte tethering by P-selectin regulates monocyte chemotactic protein-1 and tumor necrosis factor-α secretion. J Clin Invest. 1995;95:2297–303.PubMedCrossRefGoogle Scholar
  36. 36.
    Weyrich AS, Elstad MR, McEver RP, McIntyre TM, Moore KL, Morrissey JH, et al. Activated platelets signal chemokine synthesis by human monocytes. J Clin Invest. 1996;97:1525–34.PubMedCrossRefGoogle Scholar
  37. 37.
    Passacquale G, Vamadevan P, Pereira L, Hamid C, Corrigall V, Ferro A. Monocyte-platelet interaction induces a pro-inflammatory phenotype in circulating monocytes. PLoS One. 2011;6:e25595.PubMedCrossRefGoogle Scholar
  38. 38.
    Langer HF, Gawaz M. Platelet-vessel wall interactions in atherosclerotic disease. Thromb Haemost. 2008;99:480–6.PubMedGoogle Scholar
  39. 39.
    Gawaz M, Brand K, Dickfeld T, Pogatsa-Murray G, Page S, Bogner C, et al. Platelets induce alterations of chemotactic and adhesive properties of endothelial cells mediated through an interleukin-1-dependent mechanism. Implications for atherogenesis. Atherosclerosis. 2000;148:75–85.PubMedCrossRefGoogle Scholar
  40. 40.
    May AE, Kälsch T, Massberg S, Herouy Y, Schmidt R, Gawaz M. Engagement of glycoprotein IIb/IIIa (alpha(IIb)beta3) on platelets upregulates CD40L and triggers CD40L-dependent matrix degradation by endothelial cells. Circulation. 2002;106:2111–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Henn V, Slupsky JR, Gräfe M, Anagnostopoulos I, Förster R, Müller-Berghaus G, et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature. 1998;391:591–4.PubMedCrossRefGoogle Scholar
  42. 42.
    Yu G, Rux AH, Ma P, Bdeir K, Sachais BS. Endothelial expression of E-selectin is induced by the platelet-specific chemokine platelet factor 4 through LRP in an NF-kappaB-dependent manner. Blood. 2005;105:3545–51.PubMedCrossRefGoogle Scholar
  43. 43.
    Bone RC, Francis P, Pierce AK. Intravascular coagulation associated with the adult respiratory distress syndrome. Am J Med. 1976;61:585–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Zarbock A, Ley K. The role of platelets in acute lung injury (ALI). Front Biosci. 2009;1:150–8.CrossRefGoogle Scholar
  45. 45.
    Idell S, Maunder R, Fein AM, Switalska HI, Tuszynski GP, McLarty J, et al. Platelet-specific alpha granule proteins and thrombospondin in bronchoalveolar lavage in the adult respiratory distress syndrome. Chest. 1989;96:1125–32.PubMedCrossRefGoogle Scholar
  46. 46.
    Zarbock A, Singbartl K, Ley K. Complete reversal of acid-induced acute lung injury by blocking of platelet-neutrophil aggregation. J Clin Invest. 2006;116:3211–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Jeffery PK, Wardlaw A, Nelson FC, Collins JV, Kay AB. Bronchial biopsies in asthma: an ultrastructural, quantitative study and correlation. With hyperreactivity. Am Rev Respir Dis. 1989;140:1745–53.PubMedCrossRefGoogle Scholar
  48. 48.
    Pitchford SC, Yano H, Lever R, Riffo-Vasquez Y, Ciferri S, Rose MJ, et al. Platelets are essential for leukocyte recruitment in allergic inflammation. J Allergy Clin Immunol. 2003;112:109–18.PubMedCrossRefGoogle Scholar
  49. 49.
    O’Sullivan BP, Michelson A. The inflammatory role of platelets in cystic fibrosis. Am J Respir Crit Care Med. 2006;173:483–90.PubMedCrossRefGoogle Scholar
  50. 50.
    Falco A, Romano M, Lapichino L, Collura M, Davi G. Increased soluble CD40 ligand levels in cystic fibrosis. J Thromb Haemost. 2004;2:557–60.PubMedCrossRefGoogle Scholar
  51. 51.
    Herve P, Humbert M, Sitbon O, Parent F, Nunes H, Legal C, et al. Pathobiology of pulmonary hypertension. The role of platelets and thrombosis. Clin Chest Med. 2001;22:451–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Friedman R, Mears J, Barst RJ. Continuous infusion of prostacyclin normalizes plasma markers of endothelial cell injury and platelet aggregation in primary pulmonary hypertension. Circulation. 1997;96:2782–4.PubMedCrossRefGoogle Scholar
  53. 53.
    Damås JK, Otterdal K, Yndestad A, Aass H, Solum NO, Frøland SS, et al. Soluble CD40 ligand in pulmonary arterial hypertension: possible pathogenic role of the interaction between platelets and endothelial cells. Circulation. 2004;110:999–1005.PubMedCrossRefGoogle Scholar
  54. 54.
    Yaguchi A, Lobo FL, Vincent JL, Pradier O. Platelet function in sepsis. J Thromb Haemost. 2004;2:2096–102.PubMedCrossRefGoogle Scholar
  55. 55.
    Gawaz M, Dickfeld T, Bogner C, Fateh-Moghadam S, Neumann FJ. Platelet function in septic multiple organ dysfunction syndrome. Intensive Care Med. 1997;23:379–85.PubMedCrossRefGoogle Scholar
  56. 56.
    Saba HI, Saba SR, Morelli G, Hartmann RC. Endotoxin mediated inhibition of human platelet aggregation. Thromb Res. 1984;34:19–33.PubMedCrossRefGoogle Scholar
  57. 57.
    Ogura H, Kawasak T, Tanaka H, Koh T, Tanaka R, Ozeki Y, et al. Activated platelets enhance microparticle formation and platelet-leukocyte interaction in severe trauma and sepsis. J Trauma. 2001;50:801–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Asaduzzaman M, Lavasani S, Rahman M, Zhang S, Braun OO, Jeppsson B, et al. Platelets support pulmonary recruitment of neutrophils in abdominal sepsis. Crit Care Med. 2009;37:1389–96.PubMedCrossRefGoogle Scholar
  59. 59.
    Sindram D, Porte RJ, Hoffman MR, Bentley RC, Clavien PA. Platelets induce sinusoidal endothelial cell apoptosis upon reperfusion of the cold ischemic rat liver. Gastroenterology. 2000;118:183–91.PubMedCrossRefGoogle Scholar
  60. 60.
    Cywes R, Packham MA, Tietze L, Sanabria JR, Harvey PR, Phillips MJ, et al. Role of platelets in hepatic allograft preservation injury in the rat. Hepatology. 1993;18:635–47.PubMedCrossRefGoogle Scholar
  61. 61.
    Ilona TA, Pereboom I, Lisman T, Porte RJ. Platelets in liver transplantation: friend or foe? Liver Transpl. 2008;14:923–31.CrossRefGoogle Scholar
  62. 62.
    Esch JS, Jurk K, Knoefel WT, Roeder G, Voss H, Tustas RY, et al. Platelet activation and increased tissue factor expression on monocytes in reperfusion injury following orthotopic liver transplantation. Platelets. 2010;21:348–59.PubMedCrossRefGoogle Scholar
  63. 63.
    Jassem W, Koo D, Cerundolo L, Rela M, Heaton ND, Fuggle SV. Cadaveric versus living-donor livers: differences in inflammatory markers after transplantation. Transplantation. 2003;76:1599–603.PubMedCrossRefGoogle Scholar
  64. 64.
    Massberg S, Enders G, Leiderer R, Eisenmenger S, Vestweber D, Krombach F, et al. Platelet- endothelial cell interactions during ischemia/reperfusion: the role of P-selectin. Blood. 1998;92:507–15.PubMedGoogle Scholar
  65. 65.
    Koo DD, Welsh K, Roake JA, Morris PJ, Fuggle SV. Ischemia/­reperfusion injury in human kidney transplantation: an immunohistochemical analysis of changes after reperfusion. Am J Pathol. 1998;153:557–66.PubMedCrossRefGoogle Scholar
  66. 66.
    Lefer AM CB, Scalia R, Lefer DJ. Synergism between platelets and neutrophils in provoking cardiac dysfunction after ischemia and reperfusion: role of selectins. Circulation. 1998;98:1322–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Kirk AD, Morrell CN, Baldwin 3rd WM. Platelets influence vascularized organ transplants from start to finish. Am J Transplant. 2009;9:14–22.PubMedCrossRefGoogle Scholar
  68. 68.
    Bustos M, Saadi S, Platt JL. Platelet-mediated activation of endothelial cells: implications for the pathogenesis of transplant rejection. Transplantation. 2001;72:509–15.PubMedCrossRefGoogle Scholar
  69. 69.
    Daniels LJ, Platt JL. Hyperacute xenograft rejection as an immunologic barrier to xenotransplantation. Kidney Int Arch Allergy Immunol. 1997;51:S28.Google Scholar
  70. 70.
    Candinas D, Lesnikoski BA, Hancock WW, Otsu I, Koyamada N, Dalmasso AP, et al. Inhibition of platelet integrin GPIIbIIIa prolongs survival of discordant cardiac xenografts. Transplantation. 1996;62:1–5.PubMedCrossRefGoogle Scholar
  71. 71.
    Lesnikoski BA, Candinas D, Hancock WW, Otsu I, Siegel J, Bach FH, et al. Inhibition of platelet GPIIbIIIa prolongs survival of discordant cardiac xenografts. Transplant Proc. 1996;28:703.PubMedGoogle Scholar
  72. 72.
    Chen G, Wei Q, Wang XM, Wang WY, Xiong YL, Chen S. TMVA, a novel GPIb-binding protein, significantly prevents platelet microthrombi formation and prolongs discordant cardiac xenograft survival. Xenotransplantation. 2004;11:203.PubMedCrossRefGoogle Scholar
  73. 73.
    Koyamada N, Miyatake T, Candinas D, Hechenleitner P, Siegel J, Hancock WW, et al. Apyrase administration prolongs discordant xenograft survival. Transplantation. 1996;62:1739–43.PubMedCrossRefGoogle Scholar
  74. 74.
    Makowka L, Chapman FA, Cramer DV, Qian SG, Sun H, Starzl TE. Platelet activating factor and hyperacute rejection. The effect of a platelet-activating factor antagonist, SRI 63–441, on rejection of xenografts and allografts in sensitized hosts. Transplantation. 1990;50:359.PubMedCrossRefGoogle Scholar
  75. 75.
    Nonaka M, Kadokura M, Kunimura T, Kataoka D, Yamamoto S, Michihata T, et al. Organ perfusion combined with platelet aggregation inhibitor reduce IgM deposition and hyperacute xenorejection in a guinea pig-to-rat lung transplantation model. Transplant Proc. 2002;34:2749–51.PubMedCrossRefGoogle Scholar
  76. 76.
    Onozuka N, Harada O, Kobayashi M, Suto T, Fukuda A, Sudo Y, et al. Effect of prostacyclin and glycoprotein IIb/IIIa inhibitor on hyperacute rejection in a rabbit-to-dog lung xenotransplant model. Transplant Proc. 2003;35:531–2.PubMedCrossRefGoogle Scholar
  77. 77.
    Hoyer J, Lebreui G, Sicardi F, Noirclerc M. Effects of experimental lung transplantation on blood coagulation and platelets. Eur Surg Res. 1974;6:110–6.PubMedCrossRefGoogle Scholar
  78. 78.
    Zenati M, Yousem SA, Dowling RD, Stein KL, Griffith BP, Zenati M, et al. Primary graft failure following pulmonary transplantation. Transplantation. 1990;50:165–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Okada Y, Marchevsky AM, Zuo XJ, Pass JA, Kass RM, Matloff JM, et al. Accumulation of platelets in rat syngeneic lung transplants: a potential factor responsible for preservation-reperfusion injury. Transplantation. 1997;64:801–6.PubMedCrossRefGoogle Scholar
  80. 80.
    Okada Y, Marchevsky AM, Kass RM, Matloff JM, Jordan SC. A ­stable prostacyclin analog, beraprost sodium, attenuates platelet accumulation and preservation-reperfusion injury of isografts in a rat model of lung transplantation. Transplantation. 1998;66:1132–6.PubMedCrossRefGoogle Scholar
  81. 81.
    Naka Y, Toda K, Kayano K, Oz MC, Pinsky DJ. Failure to express the P-selectin gene or P-selectin blockade confers early pulmonary protection after lung ischemia or transplantation. Proc Natl Acad Sci USA. 1997;94:757–61.PubMedCrossRefGoogle Scholar
  82. 82.
    Roberts AM, Ovechkin A, Mowbray JG, Robinson TW, Lominadze D. Effects of pulmonary ischemia-reperfusion on platelet adhesion in subpleural arterioles in rabbits. Microvasc Res. 2004;67:29–37.PubMedCrossRefGoogle Scholar
  83. 83.
    Colombat M, Castier Y, Lesèche G, Rufat P, Mal H, Thabut G, et al. Early expression of adhesion molecules after lung transplantation: evidence for a role of aggregated P-selectin-positive platelets in human primary graft failure. J Heart Lung Transplant. 2004;23:1087–92.PubMedCrossRefGoogle Scholar
  84. 84.
    Sternberg DI, Shimbo D, Kawut SM, Sarkar J, Hurlitz G, D’Ovidio F, et al. Platelet activation in the postoperative period after lung transplantation. J Thorac Cardiovasc Surg. 2008;135:679–84.PubMedCrossRefGoogle Scholar
  85. 85.
    Kawut SM, Okun J, Shimbo D, Lederer DJ, De Andrade J, Lama V, et al. Soluble p-selectin and the risk of primary graft dysfunction after lung transplantation. Chest. 2009;136:237–44.PubMedCrossRefGoogle Scholar
  86. 86.
    Grotz W, Siebig S, Olschewski M, Strey CW, Peter K. Low-dose aspirin therapy is associated with improved allograft function and prolonged allograft survival after kidney transplantation. Transplantation. 2004;77:1848–53.PubMedCrossRefGoogle Scholar
  87. 87.
    Murphy GJ, Taha R, Windmill DC, Metcalfe M, Nicholson ML. Influence of aspirin on early allograft thrombosis and chronic allograft nephropathy following renal transplantation. Br J Surg. 2001;88:261–6.PubMedCrossRefGoogle Scholar
  88. 88.
    Wittwer T, Grote M, Oppelt P, Franke U, Schaefers HJ, Wahlers T. Impact of PAF antagonist BN 52021 (Ginkolide B) on post-­ischemic graft function in clinical lung transplantation. J Heart Lung Transplant. 2001;20:358–63.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Lung Transplant ProgramHenry Ford Health SystemDetroitUSA
  2. 2.Lung Transplant Program, General Thoracic SurgeryColumbia University Medical CenterNew YorkUSA

Personalised recommendations