Skip to main content

Cytokine Profile in Heart Transplantation

  • Chapter
  • First Online:
Inflammatory Response in Cardiovascular Surgery

Abstract

The founder of modern organ transplantation is Alexis Carrel (1873–1944) because of his extensive work on vascular anastomosis and accomplishment of the first successful heart transplantation (HT) in a canine model using carotid artery and jugular vein anastomosis in 1905 [1]. The realization of the first human-to-human HT was closely related to the work of Norman Shumway and Richard Lower at Stanford University, who described the technique for orthotopic canine HT [2, 3]. Shumway and colleagues not only worked extensively on an efficient surgical technique for HT, but also performance characteristics of the allograft and control of allograft rejection [2, 4–10]. However, Christiaan N. Barnard (1922–2001) performed the world’s first successful human-to-human HT in Groote Schuur Hospital, Cape Town, in 1967 [11]. The immunosuppressive regimen of Barnard and colleagues in their first three patients included corticosteroids, azathioprine, local irradiation to the transplanted heart, and antilymphocyte globulin [12, 13]. Dr. Barnard [12] pointed out that “one day this problem will be solved, we will be able to induce tolerance in our patients and organ transplantation will be a curative and not a palliative procedure.” Between 1968 and1970, a total of 166 (102, 48, and 16 annually) HTs were performed worldwide with unacceptably high mortality rates due to either rejection or infection [14]. These unfavorable outcomes led to the investigation of new immunosuppressive regimens, and most centers have stopped practicing HT. Another milestone in immunosuppression was reached in 1972 when cyclosporine was discovered in Basel, Switzerland, and subsequently approved for clinical use in 1983 [15–19]. During that period, only Shumway and his team continued using HT at Stanford University and performed 227 HT procedures between 1968 and 1981 [20]. Today, HT provides the gold standard treatment modality for patients with end-stage heart failure [21]. Since 1967, over 100,000 HTs have been performed worldwide. In the last decade, between 3,600 and 3,850 HTs have been performed in 388 countries registered with International Society of Heart and Lung transplantation (ISHLT) Registry [21, 22].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carrel A, Guthrie CC. The transplantation of veins and organs. Am Med. 1905;10:1101–2.

    Google Scholar 

  2. Lower RR, Shumway NE. Studies on orthotopic homotransplantation of the canine heart. Surg Forum. 1960;11:18–9.

    PubMed  CAS  Google Scholar 

  3. Shumway NE, Lower RR. Topical cardiac hypothermia for extended periods of anoxic arrest. Surg Forum. 1960;10:563–6.

    PubMed  CAS  Google Scholar 

  4. Shumway NE, Angell WW, Wuerflein RD. Progress in transplantation of the heart. Transplantation. 1967;5(Suppl):900–3.

    Article  PubMed  Google Scholar 

  5. Shumway NE, Lower RR, Angell WW. Present status of cardiac transplantation. Angiology. 1966;17(5):289–91.

    Article  PubMed  CAS  Google Scholar 

  6. Shumway NE, Lower RR, Stofer RC. Transplantation of the heart. Adv Surg. 1966;2:265–84.

    PubMed  CAS  Google Scholar 

  7. Shumway NE. Transplantation of the heart. Surg Gynecol Obstet. 1963;117:361–2.

    PubMed  CAS  Google Scholar 

  8. Shumway NE. Cardiac transplantation. Heart Bull. 1963;12:57–60.

    PubMed  CAS  Google Scholar 

  9. Lower RR, Stofer RC, Hurley EJ, Dong Jr E, Cohn RB, Shumway NE. Successful homotransplantation of the canine heart after anoxic preservation for seven hours. Am J Surg. 1962;104:302–6.

    Article  PubMed  CAS  Google Scholar 

  10. Lower RR, Stofer RC, Hurley EJ, Shumway NE. Complete homograft replacement of the heart and both lungs. Surgery. 1961;50:842–5.

    PubMed  CAS  Google Scholar 

  11. Barnard CN. The operation. A human cardiac transplant: an interim report of a successful operation performed at Groote Schuur Hospital, Cape Town. S Afr Med J. 1967;41(48):1271–4.

    PubMed  CAS  Google Scholar 

  12. Barnard CN. Human heart transplantation. Can Med Assoc J. 1969;100(3):91–104.

    PubMed  CAS  Google Scholar 

  13. Barnard MS, van Heerden J, Hope A, O’Donovan TG, Barnard CN. Total body perfusion for cardiac transplantation. S Afr Med J. 1969;43(3):64–7.

    PubMed  CAS  Google Scholar 

  14. Brink JG, Hassoulas J. The first human heart transplant and further advances in cardiac transplantation at Groote Schuur Hospital and the University of Cape Town – with reference to: the operation. A human cardiac transplant: an interim report of a successful operation performed at Groote Schuur Hospital, Cape Town. Cardiovasc J Afr. 2009;20(1):31–5.

    PubMed  CAS  Google Scholar 

  15. Wallwork J, McGregor CG, Wells FC, Cory-Pearce R, English TA. Cyclosporin and intravenous sulphadimidine and trimethoprim therapy. Lancet. 1983;1(8320):366–7.

    Article  PubMed  CAS  Google Scholar 

  16. White DJ, Calne RY. The use of cyclosporin a immunosuppression in organ grafting. Immunol Rev. 1982;65:115–31.

    Article  PubMed  CAS  Google Scholar 

  17. Jamieson SW, Burton NA, Bieber CP, Reitz BA, Oyer PE, Stinson EB, et al. Cardiac-allograft survival in primates treated with cyclosporin A. Lancet. 1979;1(8115):545.

    Article  PubMed  CAS  Google Scholar 

  18. Calne RY, White DJ, Rolles K, Smith DP, Herbertson BM. Prolonged survival of pig orthotopic heart grafts treated with cyclosporin A. Lancet. 1978;1(8075):1183–5.

    Article  PubMed  CAS  Google Scholar 

  19. Cooley DA, Frazier OH, Kahan BD. Cardiac transplantation with the use of cyclosporin a for immunologic suppression. Tex Heart Inst J. 1982;9(3):247–51.

    PubMed  CAS  Google Scholar 

  20. Pennock JL, Oyer PE, Reitz BA, Jamieson SW, Bieber CP, Wallwork J, et al. Cardiac transplantation in perspective for the future. Survival, complications, rehabilitation, and cost. J Thorac Cardiovasc Surg. 1982;83(2):168–77.

    PubMed  CAS  Google Scholar 

  21. Stehlik J, Edwards LB, Kucheryavaya AY, Benden C, Christie JD, Dobbels F, et al. The Registry of the International Society for Heart and Lung Transplantation: Twenty-eighth Adult Heart Transplant Report – 2011. J Heart Lung Transplant. 2011;30(10):1078–94. doi:10.1016/j.healun.2011.08.003.

    Article  PubMed  Google Scholar 

  22. Stehlik J, Edwards LB, Kucheryavaya AY, Aurora P, Christie JD, Kirk R, et al. The Registry of the International Society for Heart and Lung Transplantation: twenty-seventh official adult heart transplant report–2010. J Heart Lung Transplant. 2010;29(10):1089–103. doi:10.1016/j.healun.2010.08.007.

    Article  PubMed  Google Scholar 

  23. Taylor DO, Edwards LB, Boucek MM, Trulock EP, Waltz DA, Keck BM, et al. Registry of the International Society for Heart and Lung Transplantation: twenty-third official adult heart transplantation report–2006. J Heart Lung Transplant. 2006;25(8):869–79. doi:10.1016/j.healun.2006.05.002. S1053-2498(06)00399-8 [pii].

    Article  PubMed  Google Scholar 

  24. Novitzky D, Cooper DK, Rosendale JD, Kauffman HM. Hormonal therapy of the brain-dead organ donor: experimental and clinical studies. Transplantation. 2006;82(11):1396–401. doi:10.1097/01.tp.0000237195.12342.f1.

    Article  PubMed  CAS  Google Scholar 

  25. de Vries DK, Lindeman JH, Ringers J, Reinders ME, Rabelink TJ, Schaapherder AF. Donor brain death predisposes human kidney grafts to a proinflammatory reaction after transplantation. Am J Transplant. 2011;11(5):1064–70. doi:10.1111/j.1600-6143.2011.03466.x.

    Article  PubMed  Google Scholar 

  26. Kubala L, Ciz M, Vondracek J, Cerny J, Nemec P, Studenik P, et al. Perioperative and postoperative course of cytokines and the metabolic activity of neutrophils in human cardiac operations and heart transplantation. J Thorac Cardiovasc Surg. 2002;124(6):1122–9. doi:10.1067/mtc.2002.125814.

    Article  PubMed  CAS  Google Scholar 

  27. Butler J, Rocker GM, Westaby S. Inflammatory response to cardiopulmonary bypass. Ann Thorac Surg. 1993;55(2):552–9.

    Article  PubMed  CAS  Google Scholar 

  28. Knudsen F, Andersen LW. Immunological aspects of cardiopulmonary bypass. J Cardiothorac Anesth. 1990;4(2):245–58.

    Article  PubMed  CAS  Google Scholar 

  29. Frering B, Philip I, Dehoux M, Rolland C, Langlois JM, Desmonts JM. Circulating cytokines in patients undergoing normothermic cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1994;108(4):636–41.

    PubMed  CAS  Google Scholar 

  30. Fyfe A, Daly P, Galligan L, Pirc L, Feindel C, Cardella C. Coronary sinus sampling of cytokines after heart transplantation: evidence for macrophage activation and interleukin-4 production within the graft. J Am Coll Cardiol. 1993;21(1):171–6.

    Article  PubMed  CAS  Google Scholar 

  31. Patel JK, Kobashigawa JA. Should we be doing routine biopsy after heart transplantation in a new era of anti-rejection? Curr Opin Cardiol. 2006;21(2):127–31. doi:10.1097/01.hco.0000210309.71984.30.

    Article  PubMed  Google Scholar 

  32. Costanzo MR, Dipchand A, Starling R, Anderson A, Chan M, Desai S, et al. The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients. J Heart Lung Transplant. 2010;29(8):914–56. doi:10.1016/j.healun.2010.05.034.

    Article  PubMed  Google Scholar 

  33. Lindenfeld J, Miller GG, Shakar SF, Zolty R, Lowes BD, Wolfel EE, et al. Drug therapy in the heart transplant recipient: part I: cardiac rejection and immunosuppressive drugs. Circulation. 2004;110(24):3734–40. doi:10.1161/01.CIR.0000149745.83186.89.

    Article  PubMed  Google Scholar 

  34. Afzali B, Lombardi G, Lechler RI, Lord GM. The role of T helper 17 (Th17) and regulatory T cells (Treg) in human organ transplantation and autoimmune disease. Clin Exp Immunol. 2007;148(1):32–46. doi:10.1111/j.1365-2249.2007.03356.x.

    Article  PubMed  CAS  Google Scholar 

  35. Chadha R, Heidt S, Jones ND, Wood KJ. Th17: contributors to allograft rejection and a barrier to the induction of transplantation tolerance? Transplantation. 2011;91(9):939–45. doi:10.1097/TP.0b013e3182126eeb.

    Article  PubMed  Google Scholar 

  36. Starr TK, Jameson SC, Hogquist KA. Positive and negative selection of T cells. Annu Rev Immunol. 2003;21:139–76. doi:10.1146/annurev.immunol.21.120601.141107.

    Article  PubMed  CAS  Google Scholar 

  37. Lechler R, Ng WF, Steinman RM. Dendritic cells in transplantation – friend or foe? Immunity. 2001;14(4):357–68.

    Article  PubMed  CAS  Google Scholar 

  38. Vincenti F, Kirkman R, Light S, Bumgardner G, Pescovitz M, Halloran P, et al. Interleukin-2-receptor blockade with daclizumab to prevent acute rejection in renal transplantation. Daclizumab Triple Therapy Study Group. N Eng J Med. 1998;338(3):161–5. doi:10.1056/NEJM199801153380304.

    Article  CAS  Google Scholar 

  39. Manetti R, Parronchi P, Giudizi MG, Piccinni MP, Maggi E, Trinchieri G, et al. Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing Th cells. J Exp Med. 1993;177(4):1199–204.

    Article  PubMed  CAS  Google Scholar 

  40. Gately MK, Desai BB, Wolitzky AG, Quinn PM, Dwyer CM, Podlaski FJ, et al. Regulation of human lymphocyte proliferation by a heterodimeric cytokine, IL-12 (cytotoxic lymphocyte maturation factor). J Immunol. 1991;147(3):874–82.

    PubMed  CAS  Google Scholar 

  41. Atalar K, Afzali B, Lord G, Lombardi G. Relative roles of Th1 and Th17 effector cells in allograft rejection. Curr Opin Organ Transplant. 2009;14(1):23–9. doi:10.1097/MOT.0b013e32831b70c2.

    Article  PubMed  Google Scholar 

  42. Saiura A, Kohro T, Yamamoto T, Izumi A, Wada Y, Aburatani H, et al. Detection of an up-regulation of a group of chemokine genes in murine cardiac allograft in the absence of interferon-gamma by means of DNA microarray. Transplantation. 2002;73(9):1480–6.

    Article  PubMed  CAS  Google Scholar 

  43. Xie A, Wang S, Zhang K, Wang G, Ye P, Li J, et al. Treatment with interleukin-12/23p40 antibody attenuates acute cardiac allograft rejection. Transplantation. 2011;91(1):27–34.

    Article  PubMed  CAS  Google Scholar 

  44. Yuan X, Paez-Cortez J, Schmitt-Knosalla I, D’Addio F, Mfarrej B, Donnarumma M, et al. A novel role of CD4 Th17 cells in mediating cardiac allograft rejection and vasculopathy. J Exp Med. 2008;205(13):3133–44. doi:10.1084/jem.20081937.

    Article  PubMed  CAS  Google Scholar 

  45. Wang S, Li J, Xie A, Wang G, Xia N, Ye P, et al. Dynamic changes in Th1, Th17, and FoxP3+ T cells in patients with acute cellular rejection after cardiac transplantation. Clin Transplant. 2011;25(2):E177–86. doi:10.1111/j.1399-0012.2010.01362.x.

    Article  PubMed  CAS  Google Scholar 

  46. McNally CM, Luckhurst E, Penny R. Cell free serum interleukin-2 receptor levels after heart transplantation. J Heart Lung Transplant. 1991;10(5 Pt 1):769–74.

    PubMed  CAS  Google Scholar 

  47. Hutchinson IV, Turner D, Sankaran D, Awad M, Pravica V, Sinnott P. Cytokine genotypes in allograft rejection: guidelines for immunosuppression. Transplant Proc. 1998;30(8):3991–2.

    Article  PubMed  CAS  Google Scholar 

  48. Densem CG, Hutchinson IV, Yonan N, Brooks NH. Influence of interleukin-10 polymorphism on the development of coronary vasculopathy following cardiac transplantation. Transpl Immunol. 2003;11(2):223–8. doi:10.1016/S0966-3274(03)00015-7.

    Article  PubMed  CAS  Google Scholar 

  49. Tellides G. Th1 adaptive immune responses in cardiac graft arteriosclerosis: deleterious or beneficial? Circulation. 2006;114(15):1561–4. doi:10.1161/CIRCULATIONAHA.106.651521.

    Article  PubMed  Google Scholar 

  50. El-Sawy T, Fahmy NM, Fairchild RL. Chemokines: directing leukocyte infiltration into allografts. Curr Opin Immunol. 2002;14(5): 562–8.

    Article  PubMed  CAS  Google Scholar 

  51. Campbell JD, Gangur V, Simons FE, HayGlass KT. Allergic humans are hyporesponsive to a CXCR3 ligand-mediated Th1 immunity-promoting loop. FASEB J. 2004;18(2):329–31. doi:10.1096/fj.02-0908fje.

    PubMed  CAS  Google Scholar 

  52. Crescioli C, Buonamano A, Scolletta S, Sottili M, Francalanci M, Giomarelli P, et al. Predictive role of pretransplant serum CXCL10 for cardiac acute rejection. Transplantation. 2009;87(2):249–55. doi:10.1097/TP.0b013e3181919f5d.

    Article  PubMed  Google Scholar 

  53. Sathya CJ, Sheshgiri R, Prodger J, Tumiati L, Delgado D, Ross HJ, et al. Correlation between circulating endothelial progenitor cell function and allograft rejection in heart transplant patients. Transpl Int. 2010;23(6):641–8. doi:10.1111/j.1432-2277.2009.01043.x.

    Article  PubMed  Google Scholar 

  54. Bartel DP, Chen CZ. Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet. 2004;5(5):396–400. doi:10.1038/nrg1328.

    Article  PubMed  CAS  Google Scholar 

  55. Lu LF, Liston A. MicroRNA in the immune system, microRNA as an immune system. Immunology. 2009;127(3):291–8. doi:10.1111/j.1365-2567.2009.03092.x.

    Article  PubMed  CAS  Google Scholar 

  56. Xiao C, Rajewsky K. MicroRNA control in the immune system: basic principles. Cell. 2009;136(1):26–36. doi:10.1016/j.cell.2008.12.027.

    Article  PubMed  CAS  Google Scholar 

  57. Shan J, Feng L, Luo L, Wu W, Li C, Li S, et al. MicroRNAs: potential biomarker in organ transplantation. Transpl Immunol. 2011;24(4):210–5. doi:10.1016/j.trim.2011.03.004.

    Article  PubMed  CAS  Google Scholar 

  58. Suarez-Alvarez B, Lopez-Vazquez A, Gonzalez MZ, Fdez-Morera JL, Diaz-Molina B, Blanco-Gelaz MA, et al. The relationship of anti-MICA antibodies and MICA expression with heart allograft rejection. Am J Transplant. 2007;7(7):1842–8. doi:10.1111/j.1600-6143.2007.01838.x.

    Article  PubMed  CAS  Google Scholar 

  59. Hosenpud JD. Noninvasive diagnosis of cardiac allograft rejection. Another of many searches for the grail. Circulation. 1992;85(1):368–71.

    Article  PubMed  CAS  Google Scholar 

  60. Kemkes BM, Schutz A, Engelhardt M, Brandl U, Breuer M. Noninvasive methods of rejection diagnosis after heart transplantation. J Heart Lung Transplant. 1992;11(4 Pt 2):S221–31.

    PubMed  CAS  Google Scholar 

  61. Carrier M, Russell DH, Davis TP, Emery RW, Copeland JG. Urinary polyamines as markers of cardiac allograft rejection. A clinical evaluation. J Thorac Cardiovasc Surg. 1988;96(5):806–10.

    PubMed  CAS  Google Scholar 

  62. Smillie AE, Rigby RJ, Petrie JJ. Monitoring the response to anti-rejection therapy with serum neopterin. Transplant Proc. 1989;21(1 Pt 2):1869–70.

    PubMed  CAS  Google Scholar 

  63. Carrier M, Russell DH, Wild JC, Emery RW, Copeland JG. Prolactin as a marker of rejection in human heart transplantation. J Heart Transplant. 1987;6(5):290–2.

    PubMed  CAS  Google Scholar 

  64. Goldman MH, Landwehr DM, Lippman R, Hess M, Wolfgang T, Szentpetery S, et al. Beta 2 microglobulins in rejection and cytomegalovirus infection in a cardiac transplant recipient. Transplant Proc. 1982;14(2):437–9.

    PubMed  CAS  Google Scholar 

  65. Hammerer-Lercher A, Mair J, Antretter H, Ruttmann E, Poelzl G, Laufer G, et al. B-type natriuretic peptide as a marker of allograft rejection after heart transplantation. J Heart Lung Transplant. 2005;24(9):1444. doi:10.1016/j.healun.2004.08.018.

    Article  PubMed  Google Scholar 

  66. Cubukcuoglu Deniz G, Durdu S, Akar AR, Ozyurda U. Biotechnology and stem cell research: a glance into the future. Anadolu Kardiyol Derg. 2008;8(4):297–302.

    PubMed  Google Scholar 

  67. Sharma HS, Peters TH, Moorhouse MJ, van der Spek PJ, Bogers AJ. DNA microarray analysis for human congenital heart disease. Cell Biochem Biophys. 2006;44(1):1–9. doi:10.1385/CBB:44:1:001.

    Article  PubMed  CAS  Google Scholar 

  68. Ohki R, Yamamoto K, Ueno S, Mano H, Misawa Y, Fuse K, et al. Gene expression profiling of human atrial myocardium with atrial fibrillation by DNA microarray analysis. Int J Cardiol. 2005;102(2):233–8. doi:10.1016/j.ijcard.2004.05.026.

    Article  PubMed  Google Scholar 

  69. Stegall M, Park W, Kim D, Kremers W. Gene expression during acute allograft rejection: novel statistical analysis of microarray data. Am J Transplant. 2002;2(10):913–25.

    Article  PubMed  CAS  Google Scholar 

  70. Hollander Z, Lin D, Chen V, Ng R, Wilson-McManus J, Ignaszewski A, et al. Whole blood biomarkers of acute cardiac allograft rejection: double-crossing the biopsy. Transplantation. 2010;90(12):1388–93. doi:10.1097/TP.0b013e3182003df6.

    Article  PubMed  CAS  Google Scholar 

  71. Mitchell RN. Allograft arteriopathy: pathogenesis update. Cardiovasc Pathol. 2004;13(1):33–40. doi:10.1016/S1054-8807(03)00108-X.

    Article  PubMed  Google Scholar 

  72. Almenar-Bonet L. Spanish Heart Transplantation Registry. 18th official report of the Spanish Society of Cardiology Working Group on Heart Failure, Heart Transplantation and Associated Therapies (1984–2006). Rev Esp Cardiol. 2007;60(11):1177–87.

    Article  PubMed  Google Scholar 

  73. Julius BK, Attenhofer Jost CH, Sutsch G, Brunner HP, Kuenzli A, Vogt PR, et al. Incidence, progression and functional significance of cardiac allograft vasculopathy after heart transplantation. Transplantation. 2000;69(5):847–53.

    Article  PubMed  CAS  Google Scholar 

  74. Mehra MR, Jessup M, Gronda E, Costanzo MR. Rationale and process: International Society for Heart and Lung Transplantation guidelines for the care of cardiac transplant candidates–2006. J Heart Lung Transplant. 2006;25(9):1001–2. doi:10.1016/j.healun.2006.06.006.

    Article  PubMed  Google Scholar 

  75. Schmauss D, Weis M. Cardiac allograft vasculopathy: recent developments. Circulation. 2008;117(16):2131–41. doi:10.1161/CIRCULATIONAHA.107.711911.

    Article  PubMed  Google Scholar 

  76. Salomon RN, Hughes CC, Schoen FJ, Payne DD, Pober JS, Libby P. Human coronary transplantation-associated arteriosclerosis. Evidence for a chronic immune reaction to activated graft endothelial cells. Am J Pathol. 1991;138(4):791–8.

    PubMed  CAS  Google Scholar 

  77. Hosenpud JD, Shipley GD, Wagner CR. Cardiac allograft ­vasculopathy: current concepts, recent developments, and future directions. J Heart Lung Transplant. 1992;11(1 Pt 1):9–23.

    PubMed  CAS  Google Scholar 

  78. Hosenpud JD. Immune mechanisms of cardiac allograft vasculopathy: an update. Transpl Immunol. 1993;1(4):237–49.

    Article  PubMed  CAS  Google Scholar 

  79. Hosenpud JD, Everett JP, Morris TE, Mauck KA, Shipley GD, Wagner CR. Cardiac allograft vasculopathy. Association with cell-mediated but not humoral alloimmunity to donor-specific vascular endothelium. Circulation. 1995;92(2):205–11.

    Article  PubMed  CAS  Google Scholar 

  80. Johnson DE, Gao SZ, Schroeder JS, DeCampli WM, Billingham ME. The spectrum of coronary artery pathologic findings in human cardiac allografts. J Heart Transplant. 1989;8(5):349–59.

    PubMed  CAS  Google Scholar 

  81. Heroux AL, Silverman P, Costanzo MR, O’Sullivan EJ, Johnson MR, Liao Y, et al. Intracoronary ultrasound assessment of morphological and functional abnormalities associated with cardiac allograft vasculopathy. Circulation. 1994;89(1):272–7.

    Article  PubMed  CAS  Google Scholar 

  82. Kofoed KF, Czernin J, Johnson J, Kobashigawa J, Phelps ME, Laks H, et al. Effects of cardiac allograft vasculopathy on myocardial blood flow, vasodilatory capacity, and coronary vasomotion. Circulation. 1997;95(3):600–6.

    Article  PubMed  CAS  Google Scholar 

  83. Behrendt D, Ganz P, Fang JC. Cardiac allograft vasculopathy. Curr Opin Cardiol. 2000;15(6):422–9.

    Article  PubMed  CAS  Google Scholar 

  84. Ueland T, Sikkeland LI, Yndestad A, Eiken HG, Holm T, Guevara C, et al. Myocardial gene expression of inflammatory cytokines after heart transplantation in relation to the development of transplant coronary artery disease. Am J Cardiol. 2003;92(6):715–7.

    Article  PubMed  CAS  Google Scholar 

  85. van Loosdregt J, van Oosterhout MF, Bruggink AH, van Wichen DF, van Kuik J, de Koning E, et al. The chemokine and chemokine receptor profile of infiltrating cells in the wall of arteries with cardiac allograft vasculopathy is indicative of a memory T-helper 1 response. Circulation. 2006;114(15):1599–607. doi:10.1161/CIRCULATIONAHA.105.597526.

    Article  PubMed  Google Scholar 

  86. Faust SM, Lu G, Marini BL, Zou W, Gordon D, Iwakura Y, et al. Role of T cell TGFbeta signaling and IL-17 in allograft acceptance and fibrosis associated with chronic rejection. J Immunol. 2009;183(11):7297–306. doi:10.4049/jimmunol.0902446.

    Article  PubMed  CAS  Google Scholar 

  87. Schober A, Hristov M, Kofler S, Forbrig R, Lohr B, Heussen N, et al. CD34+ CD140b+ cells and circulating CXCL12 correlate with the angiographically assessed severity of cardiac allograft vasculopathy. Eur Heart J. 2011;32(4):476–84. doi:10.1093/eurheartj/ehq402.

    Article  PubMed  CAS  Google Scholar 

  88. Raichlin E, Bae JH, Kushwaha SS, Lennon RJ, Prasad A, Rihal CS, et al. Inflammatory burden of cardiac allograft coronary atherosclerotic plaque is associated with early recurrent cellular rejection and predicts a higher risk of vasculopathy progression. J Am Coll Cardiol. 2009;53(15):1279–86. doi:10.1016/j.jacc.2008.12.041.

    Article  PubMed  Google Scholar 

  89. Sanchez-Gomez JM, Martinez-Dolz L, Sanchez-Lazaro I, Almenar L, Sanchez-Lacuesta E, Munoz-Giner B, et al. Influence of metabolic syndrome on development of cardiac allograft vasculopathy in the transplanted heart. Transplantation. 2012;93(1):106–11. doi:10.1097/TP.0b013e3182398058.

    Article  PubMed  Google Scholar 

  90. Tona F, Marra MP, Fedrigo M, Famoso G, Bellu R, Thiene G, et al. Recent developments on coronary microvasculopathy after heart transplantation: a new target in the therapy of cardiac allograft vasculopathy. Curr Vasc Pharmacol. 2012;10(2):206–15.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of Interest

There is no undisclosed ethical problem or conflict of interest related to the submitted manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Ruchan Akar MD, FRCS CTh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Akar, A.R., Durdu, S., Inan, B., Sırlak, M. (2013). Cytokine Profile in Heart Transplantation. In: Gabriel, E., Gabriel, S. (eds) Inflammatory Response in Cardiovascular Surgery. Springer, London. https://doi.org/10.1007/978-1-4471-4429-8_45

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4429-8_45

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4428-1

  • Online ISBN: 978-1-4471-4429-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics