Skip to main content

Antifibrinolytic Therapy in Pediatric Congenital Heart Surgery

  • Chapter
  • First Online:
Inflammatory Response in Cardiovascular Surgery
  • 1310 Accesses

Abstract

For decades, aprotinin was the standard antifibrinolytic drug used in adult and pediatric major surgery [1]. Numerous studies showed that the perioperative loss of blood, and thus the use of homologous blood, could be limited by administering aprotinin. Other antifibrinolytic-acting substances, such as e-aminocapronic acid (EACA) or tranexamic acid (TXA), tended to be misfits in routine clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levy JH, Ramsay JG, Guyton RA. Aprotinin in cardiac surgery. N Engl J Med. 2006;354:1953–7.

    Article  PubMed  Google Scholar 

  2. Mangano DT, Tudor IC, Dietzel C. The risk associated with aprotinin in cardiac surgery. N Engl J Med. 2006;354:353–65.

    Article  PubMed  CAS  Google Scholar 

  3. Fergusson DA, Hebert PC, Mazer CD, Fremes S, MacAdams C, Murkin JM, et al. A comparison of aprotinin and lysine analogues in high-risk cardiac surgery. N Engl J Med. 2008;358:2319–31.

    Article  PubMed  CAS  Google Scholar 

  4. Andrew M, Vegh P, Johnston M, Bowker J, Ofosu F, Mitchell L. Maturation of the hemostatic system during childhood. Blood. 1992;80:1998–2005.

    PubMed  CAS  Google Scholar 

  5. Monagle P. Thrombosis in pediatric cardiac patients. Semin Thromb Hemost. 2003;29:547–55.

    Article  PubMed  Google Scholar 

  6. Monagle P, Barnes C, Ignjatovic V, Furmedge J, Newall F, Chan A, et al. Developmental haemostasis. Impact for clinical haemostasis laboratories. Thromb Haemost. 2006;95:362–72.

    PubMed  CAS  Google Scholar 

  7. Monagle P, Ignjatovic V, Savoia H. Hemostasis in neonates and children: pitfalls and dilemmas. Blood Rev. 2010;24:63–8.

    Article  PubMed  CAS  Google Scholar 

  8. Monagle P, Massicotte P. Developmental haemostasis: secondary haemostasis. Semin Fetal Neonatal Med. 2011;16:294–300.

    Article  PubMed  Google Scholar 

  9. Albisetti M. The fibrinolytic system in children. Semin Thromb Hemost. 2003;29:339–48.

    Article  PubMed  CAS  Google Scholar 

  10. van Oeveren W, Jansen NJ, Bidstrup BP, Royston D, Westaby S, Neuhof H, et al. Effects of aprotinin on hemostatic mechanisms during cardiopulmonary bypass. Ann Thorac Surg. 1987;44:640–5.

    Article  PubMed  Google Scholar 

  11. Royston D. Aprotinin therapy. Br J Anaesth. 1994;73:734–7.

    Article  PubMed  CAS  Google Scholar 

  12. Royston D. High-dose aprotinin therapy: a review of the first five years’ experience. J Cardiothorac Vasc Anesth. 1992;6:76–100.

    Article  PubMed  CAS  Google Scholar 

  13. Verstraete M. Clinical application of inhibitors of fibrinolysis. Drugs. 1985;29:236–61.

    Article  PubMed  CAS  Google Scholar 

  14. Green D, Ts’ao CH, Cerullo L, Cohen I, Ruo TI, Atkinson Jr AJ. Clinical and laboratory investigation of the effects of epsilon-aminocaproic acid on hemostasis. J Lab Clin Med. 1985;105:321–7.

    PubMed  CAS  Google Scholar 

  15. Ratnoff OD. Epsilon aminocaproic acid–a dangerous weapon. N Engl J Med. 1969;280:1124–5.

    Article  PubMed  CAS  Google Scholar 

  16. Zonis Z, Seear M, Reichert C, Sett S, Allen C. The effect of preoperative tranexamic acid on blood loss after cardiac operations in children. J Thorac Cardiovasc Surg. 1996;111:982–7.

    Article  PubMed  CAS  Google Scholar 

  17. Andersson L, Nilsson IM, Liedberg G, Nilsson L, Rybo G, Eriksson O, et al. Antifibrinolytic drugs. Comparative studies on trans-4-(aminomethyl)-cyclohexane carbonic acid, aminocapronic acid and p-aminomethylbenzoic acid. Arzneimittelforschung. 1971;21:424–9.

    PubMed  CAS  Google Scholar 

  18. Andersson L, Nilsson IM, Olow B. Fibrinolytic activity in man during surgery. Thromb Diath Haemorrh. 1962;7:391–403.

    PubMed  CAS  Google Scholar 

  19. Soslau G, Horrow J, Brodsky I. Effect of tranexamic acid on platelet ADP during extracorporeal circulation. Am J Hematol. 1991;38:113–9.

    Article  PubMed  CAS  Google Scholar 

  20. Davies MJ, Allen A, Kort H, Weerasena NA, Rocco D, Paul CL, et al. Prospective, randomized, double-blind study of high-dose aprotinin in pediatric cardiac operations. Ann Thorac Surg. 1997;63:497–503.

    Article  PubMed  CAS  Google Scholar 

  21. Williams GD, Ramamoorthy C, Pentcheva K, Boltz MG, Kamra K, Reddy VM. A randomized, controlled trial of aprotinin in ­neonates undergoing open-heart surgery. Paediatr Anaesth. 2008;18:812–9.

    Article  PubMed  Google Scholar 

  22. Carrel TP, Schwanda M, Vogt PR, Turina MI. Aprotinin in pediatric cardiac operations: a benefit in complex malformations and with high-dose regimen only. Ann Thorac Surg. 1998;66:153–8.

    Article  PubMed  CAS  Google Scholar 

  23. Murugesan C, Banakal SK, Garg R, Keshavamurthy S, Muralidhar K. The efficacy of aprotinin in arterial switch operations in infants. Anesth Analg. 2008;107:783–7.

    Article  PubMed  CAS  Google Scholar 

  24. Schouten ES, van de Pol AC, Schouten AN, Turner NM, Jansen NJ, Bollen CW. The effect of aprotinin, tranexamic acid, and aminocaproic acid on blood loss and use of blood products in major pediatric surgery: a meta-analysis. Pediatr Crit Care Med. 2009;10:182–90.

    Article  PubMed  Google Scholar 

  25. Pasquali SK, Li JS, He X, Jacobs ML, O’Brien SM, Hall M, et al. Comparative analysis of antifibrinolytic medications in pediatric heart surgery. J Thorac Cardiovasc Surg. 2012;143:550–7.

    Article  PubMed  CAS  Google Scholar 

  26. Chauhan S, Bisoi A, Kumar N, Mittal D, Kale S, Kiran U, et al. Dose comparison of tranexamic acid in pediatric cardiac surgery. Asian Cardiovasc Thorac Ann. 2004;12:121–4.

    Article  PubMed  Google Scholar 

  27. Levin E, Wu J, Devine DV, Alexander J, Reichart C, Sett S, et al. Hemostatic parameters and platelet activation marker expression in cyanotic and acyanotic pediatric patients undergoing cardiac surgery in the presence of tranexamic acid. Thromb Haemost. 2000;83:54–9.

    PubMed  CAS  Google Scholar 

  28. van der Staak FH, de Haan AF, Geven WB, Festen C. Surgical repair of congenital diaphragmatic hernia during extracorporeal membrane oxygenation: hemorrhagic complications and the effect of tranexamic acid. J Pediatr Surg. 1997;32:594–9.

    Article  PubMed  Google Scholar 

  29. Bulutcu FS, Ozbek U, Polat B, Yalcin Y, Karaci AR, Bayindir O. Which may be effective to reduce blood loss after cardiac operations in cyanotic children: tranexamic acid, aprotinin or a combination? Paediatr Anaesth. 2005;15:41–6.

    Article  PubMed  Google Scholar 

  30. Schindler E, Photiadis J, Sinzobahamvya N, Dores A, Asfour B, Hraska V. Tranexamic acid: an alternative to aprotinin as antifibrinolytic therapy in pediatric congenital heart surgery. Eur J Cardiothorac Surg. 2011;39:495–9.

    Article  PubMed  Google Scholar 

  31. Edmunds Jr LH. Blood-surface interactions during cardiopulmonary bypass. J Card Surg. 1993;8:404–10.

    Article  PubMed  Google Scholar 

  32. Despotis GJ, Joist JH. Anticoagulation and anticoagulation reversal with cardiac surgery involving cardiopulmonary bypass: an update. J Cardiothorac Vasc Anesth. 1999;13:18–29.

    PubMed  CAS  Google Scholar 

  33. Edmunds Jr LH, Colman RW. Thrombin during cardiopulmonary bypass. Ann Thorac Surg. 2006;82:2315–22.

    Article  PubMed  Google Scholar 

  34. Chan AK, Leaker M, Burrows FA, Williams WG, Gruenwald CE, Whyte L, et al. Coagulation and fibrinolytic profile of paediatric patients undergoing cardiopulmonary bypass. Thromb Haemost. 1997;77:270–7.

    PubMed  CAS  Google Scholar 

  35. Mangano DT, Miao Y, Vuylsteke A, Tudor IC, Juneja R, Filipescu D, et al. Mortality associated with aprotinin during 5 years following coronary artery bypass graft surgery. JAMA. 2007;297:471–9.

    Article  PubMed  CAS  Google Scholar 

  36. Szekely A, Sapi E, Breuer T, Kertai MD, Bodor G, Vargha P, et al. Aprotinin and renal dysfunction after pediatric cardiac surgery. Paediatr Anaesth. 2008;18:151–9.

    Article  PubMed  Google Scholar 

  37. Backer CL, Kelle AM, Stewart RD, Suresh SC, Ali FN, Cohn RA, et al. Aprotinin is safe in pediatric patients undergoing cardiac surgery. J Thorac Cardiovasc Surg. 2007;134:1421–6.

    Article  PubMed  CAS  Google Scholar 

  38. Brown JR, Birkmeyer NJ, O’Connor GT. Meta-analysis comparing the effectiveness and adverse outcomes of antifibrinolytic agents in cardiac surgery. Circulation. 2007;115:2801–13.

    Article  PubMed  CAS  Google Scholar 

  39. Breuer T, Martin K, Wilhelm M, Wiesner G, Schreiber C, Hess J, et al. The blood sparing effect and the safety of aprotinin compared to tranexamic acid in paediatric cardiac surgery. Eur J Cardiothorac Surg. 2009;35:167–71.

    Article  PubMed  Google Scholar 

  40. Fodstad H. Convulsive seizures following subdural application of fibrin sealant containing tranexamic acid in a rat model. Neurosurgery. 2001;49:479–80.

    PubMed  CAS  Google Scholar 

  41. Schlag MG, Hopf R, Zifko U, Redl H. Epileptic seizures following cortical application of fibrin sealants containing tranexamic acid in rats. Acta Neurochir (Wien). 2002;144:63–9.

    Article  CAS  Google Scholar 

  42. Jaquiss RD, Ghanayem NS, Zacharisen MC, Mussatto KA, Tweddell JS, Litwin SB. Safety of aprotinin use and re-use in pediatric cardiothoracic surgery. Circulation. 2002;106:I90–4.

    PubMed  Google Scholar 

  43. Furtmuller R, Schlag MG, Berger M, Hopf R, Huck S, Sieghart W, et al. Tranexamic acid, a widely used antifibrinolytic agent, causes convulsions by a gamma-aminobutyric acid(A) receptor antagonistic effect. J Pharmacol Exp Ther. 2002;301:168–73.

    Article  PubMed  CAS  Google Scholar 

  44. Williams-Johnson JA, McDonald AH, Strachan GG, Williams EW. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2) a randomised, placebo-controlled trial. West Indian Med J. 2010;59:612–24.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehrenfried Schindler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Schindler, E. (2013). Antifibrinolytic Therapy in Pediatric Congenital Heart Surgery. In: Gabriel, E., Gabriel, S. (eds) Inflammatory Response in Cardiovascular Surgery. Springer, London. https://doi.org/10.1007/978-1-4471-4429-8_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4429-8_40

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4428-1

  • Online ISBN: 978-1-4471-4429-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics