Skip to main content

Appendix C: Quaternions

  • Chapter
  • 1375 Accesses

Part of the Simulation Foundations, Methods and Applications book series (SFMA)

Abstract

This Appendix presents an alternate representation of rotation matrices using quaternions. This representation is extremely useful in reducing rounding-error problems found when combining rotation matrices. Also, the interpolation between two quaternions representing the orientation of an object is easier than using rotation matrices. This is especially useful when backtracking in time the object’s motion to determine the instant just before a collision.

Keywords

  • Rotation Matrix Representation
  • Unit Quaternions
  • Pure Quaternion
  • Quaternion Result
  • Computer Graphics Industry

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4471-4417-5_8
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-1-4471-4417-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.95
Price excludes VAT (USA)
Hardcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 8.1
Fig. 8.2

Notes

  1. 1.

    Unless otherwise stated, whenever we mention ℝn, we are referring to the n-dimensional Euclidean space and its associated properties.

References

  1. Craig, J.J.: Introduction to Robotics, Mechanics and Control. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  2. Foley, J.D., van Dam, A., Feiner, S.K., Hughes, J.F.: Computer Graphics Principles and Practice. Addison-Wesley, Reading (1996)

    MATH  Google Scholar 

  3. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  4. Hart, J.C., Francis, G.K., Kauffman, L.H.: Visualizing quaternion rotation. ACM Trans. Graph. 13(3), 256–276 (1994)

    CrossRef  Google Scholar 

  5. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1991)

    MATH  CrossRef  Google Scholar 

  6. Pique, M.E.: Rotation tools. In: Graphics Gems I, pp. 465–469 (1990)

    Google Scholar 

  7. Shoemake, K.: Animating rotation with quaternion curves. Comput. Graph. (Proc. SIGGRAPH) 19, 245–254 (1985)

    CrossRef  Google Scholar 

  8. Strang, G.: Linear Algebra and Its Applications. Academic Press, San Diego (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Coutinho, M.G. (2013). Appendix C: Quaternions. In: Guide to Dynamic Simulations of Rigid Bodies and Particle Systems. Simulation Foundations, Methods and Applications. Springer, London. https://doi.org/10.1007/978-1-4471-4417-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4417-5_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4416-8

  • Online ISBN: 978-1-4471-4417-5

  • eBook Packages: Computer ScienceComputer Science (R0)