Vision-Based Control of a Quad-Rotor UAV

  • Luis Rodolfo García Carrillo
  • Alejandro Enrique Dzul López
  • Rogelio Lozano
  • Claude Pégard
Part of the Advances in Industrial Control book series (AIC)

Abstract

This chapter introduces two different vision-based control strategies for stabilizing a quad-rotor during flight. The first strategy is based on a homography estimation technique and an optical flow computation. Using this approach, a comparison of three control methods is addressed, with the purpose of validating the most effective approach for stabilizing the vehicle when using visual feedback. In the second strategy, the vision system is implemented for allowing altitude control, which allows stabilizing the 3-dimensional position and regulating the velocity of the vehicle using optical flow. For validating the effectiveness of the two vision-based control strategies, the tasks of autonomous hover and navigation are executed in real-time experiments.

Keywords

Sliding Mode 

References

  1. 6.
    Altuğ, E., Ostrowski, J.P., Taylor, C.J.: Control of a quadrotor helicopter using dual camera visual feedback. Int. J. Robot. Res. 24(5), 329–341 (2005) CrossRefGoogle Scholar
  2. 14.
    Bouabdallah, S., Noth, A.: PID vs LQ control techniques applied to an indoor micro quadrotor. In: IEEE International Conference on Intelligent Robots and Systems, Sendai, Japan, October 2004 Google Scholar
  3. 15.
    Bouabdallah, S., Siegwart, R.: Backstepping and sliding-mode techniques applied to an indoor micro quadrotor. In: IEEE International Conference on Robotics and Automation, Barcelona, Spain, April 2005 Google Scholar
  4. 16.
    Bouguet, J.Y.: Pyramidal implementation of the Lucas Kanade feature tracker. Technical report, Intel Corporation, Microprocessor Research Labs, Technical report (1999) Google Scholar
  5. 17.
    Bouguet, J.Y.: Camera calibration toolbox for Matlab. http://www.vision.caltech.edu/bouguetj/calib_doc/index.html (2011)
  6. 20.
    Bradski, G., Kaehler, A.: Learning OpenCV. O’Reilly Media, Sebastopol (2008) Google Scholar
  7. 27.
    Castillo, P., Dzul, A., Lozano, R.: Real time stabilization and tracking of a four-rotor mini rotorcraft. IEEE Trans. Control Syst. Technol. 12(4), 510–515 (2004) MathSciNetCrossRefGoogle Scholar
  8. 44.
    Horaud, R., Conio, B., Leboulleux, O., Lacolle, B.: An analytic solution for the perspective 4-point problem. Comput. Vis. Graph. Image Process. 47, 33–44 (1989) CrossRefGoogle Scholar
  9. 52.
    Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, San Francisco (2002) MATHGoogle Scholar
  10. 68.
    Rondon, E., Fantoni-Coichot, I., Sanchez, A., Sanahuja, G.: Optical flow-based controller for reactive and relative navigation dedicated to a four rotor rotorcraft. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, USA, October 2009, pp. 684–689 (2009) Google Scholar
  11. 70.
    Saberi, A., Kokotovic, P.V., Sussmann, H.J.: Global stabilization of partially linear composite systems. SIAM J. Control Optim. 28(6), 1491–1503 (1990) MathSciNetMATHCrossRefGoogle Scholar
  12. 77.
    Teel, A.R.: Global stabilization and restricted tracking for multiple integrators with bounded controls. In: Systems and Control Letters, vol. 18, pp. 165–171 (1992) Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Luis Rodolfo García Carrillo
    • 1
  • Alejandro Enrique Dzul López
    • 2
  • Rogelio Lozano
    • 3
  • Claude Pégard
    • 4
  1. 1.HEUDIASYC UMR 6599, Centre de Recherches de RoyalieuUniversité de Technologie de CompiègneCompiègne cedexFrance
  2. 2.División de Estudios de PosgradoInstituto Tecnológico de la LagunaTorreónMexico
  3. 3.UMR-CNRS 6599, Centre de Recherche de RoyalieuUniversité de Technologie de CompiègneCompiègneFrance
  4. 4.Laboratoire MIS EA 4290Université de Picardie Jules VerneAmiensFrance

Personalised recommendations