Skip to main content

Laser Lithotripsy Physics

  • Chapter
  • First Online:
Urolithiasis

Abstract

Lasers can be used as intracorporeal lithotriptors for urinary calculi. Laser lithotripsy generally involves one of two mechanisms: photoacoustic or photothermal lithotripsy. Photoacoustic lithotripsy produces large fragments but has difficulty in fragmenting ­calcium oxalate monohydrate, cystine, and brushite stones. Photothermal lithotripsy produces small fragments and is effective in fragmenting all stone compositions. Photothermal lithotripsy, such was with the holmium:YAG laser, tends to be slow compared to photoacoustic lithotripsy. The physics of photothermal lithotripsy is reviewed with the objective to enhance fragmentation efficiency and minimization of retropulsion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Teichman JMH, et al. Chapter 6a. Lasers. In: Smith AD, Badlani GH, Bagley DH, editors. Smith’s textbook of endourology. 2nd ed. Hamilton: BC Decker; 2007. p. 37–40. ISBN: 1-55009-365-7.

    Google Scholar 

  2. Maiman TH. Stimulated optical radiation in ruby. Nature. 1960;187:493–4.

    Article  Google Scholar 

  3. Patel CK, Mc Farlane RA, Faust WL. Selective excitation through vibrational energy transfer and optical maser action in N2–CO2. Physiol Rev. 1964;13:617–9.

    CAS  Google Scholar 

  4. Rosemberg SK. Carbon dioxide laser treatment of external genital lesions. Urology. 1985;25:555–8.

    Article  PubMed  CAS  Google Scholar 

  5. Rosemberg SK. Lasers and squamous cell carcinoma of external genitalia. Urology. 1986;27:430–3.

    Article  PubMed  CAS  Google Scholar 

  6. Greenbaum SS, Glogau R, Stegman SJ, et al. Carbon dioxide laser treatment of erythroplasia of Queyrat. J Dermatol Surg Oncol. 1989;15:747–50.

    PubMed  CAS  Google Scholar 

  7. Sorokin PP, Lankard JR. Stimulated emission observed from an organic dye, chloroaluminium phthalocyanine. IBM J Res Dev. 1966;10:162.

    Article  CAS  Google Scholar 

  8. Dretler SP, Watson G, Parrish JA, Murray S. Pulsed dye laser fragmentation of ureteral calculi: initial clinical experience. J Urol. 1987;137:386–9.

    PubMed  CAS  Google Scholar 

  9. Bhatta KM, Nishioka NS. Effect of pulse duration on microsecond-domain laser lithotripsy. Lasers Surg Med. 1989;9:454–7.

    Article  PubMed  CAS  Google Scholar 

  10. Teichmann HO, Herrmann TR, Bach T. Technical aspects of lasers in urology. World J Urol. 2007;25:221–5. Epub (2007) May 30.

    Article  PubMed  Google Scholar 

  11. Jacques SL. Laser-tissue interactions. Photochemical, photothermal, and photomechanical. Surg Clin North Am. 1992;72(3):531–58.

    PubMed  CAS  Google Scholar 

  12. Berlien H-P, Muller G. Applied laser medicine. Berlin: Springer; 2003.

    Book  Google Scholar 

  13. Rink K, Delacrétaz G, Salathé RP. Fragmentation process of current laser lithotriptors. Lasers Surg Med. 1995;16:134–46.

    Article  PubMed  CAS  Google Scholar 

  14. Chan KF, Pfefer TJ, Teichman JMH, Welch AJ. A perspective on laser lithotripsy: the fragmentation processes. J Endourol. 2001;15:257–73.

    Article  PubMed  CAS  Google Scholar 

  15. Zhong P, Tong HL, Cocks FH, Pearle MS, Preminger GM. Transient cavitation and acoustic emission produced by different laser lithotripters. J Endourol. 1998;12:371–8.

    Article  PubMed  CAS  Google Scholar 

  16. Kang HW, Lee H, Teichman JM, Oh J, Kim J, Welch AJ. Dependence of calculus retropulsion on pulse duration during Ho: YAG laser lithotripsy. Lasers Surg Med. 2006;38:762–72.

    Article  PubMed  Google Scholar 

  17. Qiu JZ, Teichman JMH, Wang TY, Neev J, Glickman RD, Chan KF, Milner TE. Femtosecond laser lithotripsy: ­feasibility and ablation mechanism. J Biomed Opt. 2010;15:028001 (Apr 14, 2010).

    Article  PubMed  Google Scholar 

  18. Chan KF, Hammer DX, Choi B, Teichman JMH, McGuff HS, Pratisto H, Jansen ED, Welch AJ. Free electron laser lithotripsy: threshold radiant exposures. J Endourol. 2000;14:161–7.

    Article  PubMed  Google Scholar 

  19. Teichman JM, Vassar GJ, Bishoff JT, Bellman GC. Holmium:YAG lithotripsy yields smaller fragments than lithoclast, pulsed dye laser or electrohydraulic lithotripsy. J Urol. 1998;159(1):17–23.

    Article  PubMed  CAS  Google Scholar 

  20. Dretler SP. An evaluation of ureteral laser lithotripsy: 225 consecutive patients. J Urol. 1990;143:267–72.

    PubMed  CAS  Google Scholar 

  21. Fradin D, Bass M. Electron avalanche breakdown induced by ruby laser light. Appl Phys Lett. 1973;22(5):206–8.

    Article  CAS  Google Scholar 

  22. Doukas AG, Zweig AD, Frisoli JK, Birngruber R, Deutsch TF. Non-invasive determination of shock wave pressure generated by optical breakdown. Appl Phys B. 1991;53:237–45.

    Article  Google Scholar 

  23. Denstedt JD, Chun SS, Miller MD, Eberwein PM. Intracorporeal lithotripsy with the Alexandrite laser. Lasers Surg Med. 1997;20:433–6.

    Article  PubMed  CAS  Google Scholar 

  24. Pearle MS, Sech SM, Cobb CG, Riley JR, Clark PJ, Preminger GM, Drach GW, Roehrborn CG. Safety and efficacy of the Alexandrite laser for the treatment of renal and ureteral calculi. Urology. 1998;51:33–8.

    Article  PubMed  CAS  Google Scholar 

  25. Denstedt JD, et al. Intracorporeal lithotripsy with the alexandrite laser. Lasers Surg Med. 1997;20:433–6.

    Article  PubMed  CAS  Google Scholar 

  26. Tschepe J, Gundlach P, Leege N, Hopf J, Müller G, Scherer H. The endoscopic laser lithotripsy of salivary gland calculi and the problem of fiber wear. In: Optical fibers in medicine VII, SPIE vol 1649. 1992, p. 254–63. Los Angeles, CA.

    Google Scholar 

  27. Helfmann J. Untersuchung der physikalischen Phanomene bei der Zertrummerung von Korperkonkrementen durch laserinduzierte Plasmen. In: Advances in laser medicine. Landsberg/Zurich: Ecomed; 1992.

    Google Scholar 

  28. Helfmann J, Muller G. Laser lithotripsy: process overview. Med Laser Appl. 2001;16:30–7.

    Article  Google Scholar 

  29. Tischer CF, Koort H, Bazo A, Rasch R, Thiede C. Clinical experiences with a new frequency-doubled double-pulse Nd:YAG Laser (FREDDY) for the treatment of urolithiasis. In: Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems XII, SPIE, vol 4609. 2002. San Jose CA.

    Google Scholar 

  30. Schafhauser W, Zorcher W, et al. Erste klinische Erfahrungen mit neuem frequenzverdoppeltem Doppelpuls Neodym:YAG Laser in der Therapie der Urolithiasis. In: Poster presentation at the DGU, Hamburg, 2000.

    Google Scholar 

  31. Stark L, Carl P, Zauner R. A new technique for Laser-Lithotripsy: FREDDY, the partially frequency-doubled double-Pulse Nd:YAG Laser. In: Poster presentation at the 1st international consultation on stone disease, Paris, 2001.

    Google Scholar 

  32. Dubosq F, Pasqui F, Girard F, Beley S, Lesaux N, Gattengno B, Thibault P, Traxer O. Endoscopic lithotripsy and the FREDDY laser: initial experience. J Endourol. 2006;20:296–9.

    Article  PubMed  Google Scholar 

  33. Stark L, Car P. First clinical experiences of laser lithotripsy using the partially frequency-doubled double-pulse neodymium:YAG laser (“FREDDY”) (abstract). J Urol. 2001;165:362A.

    Google Scholar 

  34. Vassar GJ, Chan KF, Teichman JM, Glickman RD, Weintraub ST, Pfefer TJ, Welch AJ. Holmium: YAG lithotripsy: photothermal mechanism. J Endourol. 1999;13:181–90.

    Article  PubMed  CAS  Google Scholar 

  35. Jansen ED, Asshauer T, Frenz M, Motamedi M, Delacretaz G, Welch AJ. Effect of pulse duration on bubble formation and laser-induced pressure waves during holmium laser ablation. Lasers Surg Med. 1996;18:278–93.

    Article  PubMed  CAS  Google Scholar 

  36. Schmidlin FR, Beghuin D, Delacretaz GP, Venzi G, Jichlinksi P, Rink K, Leisinger H-J, Graber P. Laser lithotripsy with the Ho:YAG laser: fragmentation process revealed by time-resolved imaging. In: Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VIII, SPIE, vol 3245. 1998. p. 123–26. San Jose CA.

    Google Scholar 

  37. Chan KF, Vassar GJ, Pfefer TJ, Teichman JMH, Glickman RD, Weintraub ST, Welch AJ. Holmium:YAG laser lithotripsy: a dominant photothermal ablative mechanism with chemical decomposition of urinary calculi. Lasers Surg Med. 1999;25:22–37.

    Article  PubMed  CAS  Google Scholar 

  38. Freiha GS, Glickman RD, Teichman JM. Holmium:YAG laser-induced damage to guidewires: experimental study. J Endourol. 1997;11:331–6.

    Article  PubMed  CAS  Google Scholar 

  39. Teichman JM, Rogenes VJ, McIver BJ, Harris JM. Holmium:yttrium-aluminum-garnet laser cystolithotripsy of large bladder calculi. Urology. 1997;50:44–8.

    Article  PubMed  CAS  Google Scholar 

  40. Teichman JM, Rao RD, Glickman RD, Harris JM. Holmium:YAG percutaneous nephrolithotomy: the laser incident angle matters. J Urol. 1998;159:690–4.

    Article  PubMed  CAS  Google Scholar 

  41. Teichman JM, Rao RD, Rogenes VJ, Harris JM. Ureteroscopic management of ureteral calculi: electrohydraulic versus holmium:YAG lithotripsy. J Urol. 1997;158:1357–61.

    Article  PubMed  CAS  Google Scholar 

  42. Spore SS, Teichman JM, Corbin NS, Champion PC, Williamson EA, Glickman RD. Holmium: YAG lithotripsy: optimal power settings. J Endourol. 1999;13:559–66.

    Article  PubMed  CAS  Google Scholar 

  43. Lee H, Ryan RT, Teichman JM, Kim J, Choi B, Arakeri NV, Welch AJ. Stone retropulsion during holmium:YAG lithotripsy. J Urol. 2003;169(3):881–5.

    Article  PubMed  Google Scholar 

  44. Finley DS, Petersen J, Abdelshehid C, Ahlering M, Chou D, Borin J, Eichel L, McDougall E, Clayman RV. Effect of holmium:YAG laser pulse width on lithotripsy retropulsion in vitro. J Endourol. 2005;19:1041–4.

    Article  PubMed  Google Scholar 

  45. Wezel F, Häcker A, Gross AJ, Michel MS, Bach T. Effect of pulse energy, frequency and length on holmium:yttrium-aluminum-garnet laser fragmentation efficiency in non-floating artificial urinary calculi. J Endourol. 2010;24:1135–40.

    Article  PubMed  Google Scholar 

  46. Sea J, Jonat LM, Chew BH, Qiu J, Wang B, Hoopman J, Milner T, Teichman JMH. Optimal power settings for holmium:YAG lithotripsy. J Urol. 2012;187:914–9.

    Article  PubMed  Google Scholar 

  47. Chan KF, Lee H, Teichman JMH, Kamerer A, McGuV HS, Welch AJ. Erbium:YAG laser lithotripsy. J Urol. 2002;168:436–41.

    Article  PubMed  Google Scholar 

  48. Lee H, Kang HW, Teichman JM, Oh J, Welch AJ. Urinary calculus fragmentation during Ho: YAG and Er:YAG lithotripsy. Lasers Surg Med. 2006;38:39–51.

    Article  PubMed  Google Scholar 

  49. Lee H, Ryan RT, Teichman JM, Landman J, Clayman RV, Milner TE, Welch AJ. Effect of lithotripsy on holmium:YAG optical beam profile. J Endourol. 2003;17:63–7.

    Article  PubMed  Google Scholar 

  50. Teichman JM, Chan KF, Cecconi PP, Corbin NS, Kamerer AD, Glickman RD, Welch AJ. Erbium: YAG versus holmium:YAG lithotripsy. J Urol. 2001;165:876–9.

    Article  PubMed  CAS  Google Scholar 

  51. Iwai K, Shi Y, Matsuura Y, Miyagi M. Rugged hollow fiber for the infrared and its use in laser lithotripsy. In: Optics in Health Care and Biomedical Optics: Diagnostics and Treatment, SPIE, vol 4916. 2002. p. 115–9. Shanghai China.

    Google Scholar 

  52. Teichman JMH, Kang W, Glickman RD, Welch AJ. Update on Erbium:YAG lithotripsy. In: AIP conference proceedings 2007, vol 900. IOP Institute of Physics Publishing Ltd. p. 216–27. Indianapolis, Indiana.

    Google Scholar 

  53. Blackmon RL, Irby PB, Fried NM. Holmium:YAG (lambda  =  2,120 nm) versus thulium fiber (lambda  =  1,908 nm) laser lithotripsy. Lasers Surg Med. 2010;42:232–6.

    Article  PubMed  Google Scholar 

  54. Blackmon RL, Irby PB, Fried NM. Thulium fiber laser lithotripsy using tapered fibers. Lasers Surg Med. 2010;42:45–50.

    Article  PubMed  Google Scholar 

  55. Nazif OA, Teichman JMH, Glickman RD, Welch AJ. Review of laser fibers: a practical guide for urologists. J Endourol. 2004;18:818–29.

    Article  PubMed  Google Scholar 

  56. Marks AJ, Mues AC, Knudsen BE, Teichman JMH. Holmium:yttrium-aluminum-garnet lithotripsy proximal fiber failures from laser and fiber mismatch. Urology. 2008;71:1049–51.

    Article  PubMed  Google Scholar 

  57. Knudsen BE, Glickman RD, Stallman KJ, Maswadi S, Chew BH, Beiko DT, Denstedt JD, Teichman JMH. Performance and safety of holmium: YAG laser optical fibers. J Endourol. 2005;19:1092–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joel M. H. Teichman M.D. or Kin Foong Chan Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Teichman, J.M.H., Qiu, J., Kang, W., Chan, K.F., Milner, T.E. (2012). Laser Lithotripsy Physics. In: Talati, J., Tiselius, HG., Albala, D., YE, Z. (eds) Urolithiasis. Springer, London. https://doi.org/10.1007/978-1-4471-4387-1_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4387-1_39

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4383-3

  • Online ISBN: 978-1-4471-4387-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics