Skip to main content
Book cover

Urolithiasis pp 141–149Cite as

The Genetics of Kidney Stones

  • Chapter
  • First Online:
  • 256 Accesses

Abstract

Nephrolithiasis is a common condition. The most common types of kidney stones contain calcium (most often calcium oxalate or calcium phosphate), representing 90 % of all stones.

The etiology of calcium nephrolithiasis is multifactorial, involving nutritional, environmental, and genetic determinants. Genetics play a role in defining the metabolic “milieu” from which kidney stones may form. Monogenic stone-forming conditions are rare but very interesting as “models” to highlight the genetic component of idiopathic nephrolithiasis. Among the others, a tendency to form stones may derive from anomalies of the calcium-sensing receptor, adenylyl cyclase, vitamin D receptor, claudin, chloride channels, phosphatidylinositol 4,5-bisphosphate 5-phosphatase, sodium/phosphate transporter, carriers involved in the pathogenesis of distal renal tubular acidosis, genes involved in renal morphogenesis, and medullary sponge kidney.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Stamatelou KK, Francis ME, Jones CA, et al. Time trends in reported prevalence of kidney stones in the united states: 1976-1994. Kidney Int. 2003;63:1817–23.

    Article  PubMed  Google Scholar 

  2. Curhan GC, Willett WC, Rimm EB, et al. Family history and risk of kidney stones. J Am Soc Nephrol. 1997;8:1568–73.

    PubMed  CAS  Google Scholar 

  3. Goldfarb DS, Fischer ME, Keich Y, et al. A twin study of genetic and dietary influences on nephrolithiasis: a report from the Vietnam Era Twin (VET) registry. Kidney Int. 2005;67:1053–61.

    Article  PubMed  Google Scholar 

  4. Lerolle N, Lantz B, Paillard F, et al. Risk factors for nephrolithiasis in patients with familial idiopathic hypercalciuria. Am J Med. 2002;113:99–103.

    Article  PubMed  Google Scholar 

  5. Nicolaidou P, Themeli S, Karpathios T, et al. Family pattern of idiopathic hypercalciuria and its subtypes. J Urol. 1996;155:1042–4.

    Article  PubMed  CAS  Google Scholar 

  6. Harangi F, Méhes K. Family investigations in idiopathic hypercalciuria. Eur J Pediatr. 1993;152:64–8.

    Article  PubMed  CAS  Google Scholar 

  7. Lerolle N, Coulet F, Lantz B, Paillard F, Houillier P, Soubrier F, Gattegno B, Jeunemaitre X, Ronco P, Rondeau E. No evidence for point mutations of the calcium-sensing receptor in familial idiopathic hypercalciuria. Nephrol Dial Transplant. 2001;16:2317–22.

    Article  PubMed  CAS  Google Scholar 

  8. Loredo-Osti JC, Roslin NM, Tessier J, et al. Segregation of urine calcium excretion in families ascertained for nephrolithiasis: evidence for a major gene. Kidney Int. 2005;68:966–71.

    Article  PubMed  CAS  Google Scholar 

  9. Falchetti A, Vezzoli G, Gambaro G. Genetics of primary hypercalciuria. Clin Cases Miner Bone Metab. 2004;1:27–33.

    Google Scholar 

  10. Hunter D, De Lange M, Snieder H, et al. Genetic contribution to bone metabolism, calcium excretion, and vitamin D and parathyroid hormone regulation. J Bone Miner Res. 2001;16:371–8.

    Article  PubMed  CAS  Google Scholar 

  11. Vezzoli G, Soldati L, Gambaro G. Hypercalciuria revisited: one or many conditions? Pediatr Nephrol. 2008;23:503–6.

    Article  PubMed  Google Scholar 

  12. Aladjem M, Barr J, Lahat E, et al. Renal and absorptive hypercalciuria: a metabolic disturbance with varying and interchanging modes of expression. Pediatrics. 1996;97:216–9.

    PubMed  CAS  Google Scholar 

  13. Maierhofer WJ, Lemann Jr J, Gray RW, et al. Dietary calcium and serum 1,25-(OH)2-vitamin D concentrations as determinants of calcium balance in healthy men. Kidney Int. 1984;26:752–9.

    Article  PubMed  CAS  Google Scholar 

  14. Vezzoli G, Terranegra A, Arcidiacono T, et al. R990G polymorphism of calcium-sensing receptor does produce a gain-of-function and predispose to primary hypercalciuria. Kidney Int. 2007;71:1155–62.

    Article  PubMed  CAS  Google Scholar 

  15. Hendy GN, D’Souza-Li L, Yang B, et al. Mutations of the calcium-sensing receptor (CASR) in familial hypocalciuric hypercalcemia, neonatal severe hyperparathyroidism, and autosomal dominant hypocalcemia. Hum Mutat. 2000;16:281–96.

    Article  PubMed  CAS  Google Scholar 

  16. Vargas-Poussou R, Huang C, Hulin P, et al. Functional characterization of a calcium-sensing receptor mutation in severe autosomal dominant hypocalcemia with a Bartter-like syndrome. J Am Soc Nephrol. 2002;13:2259–66.

    Article  PubMed  CAS  Google Scholar 

  17. Sands JM, Naruse M, Baum M, et al. Apical extracellular calcium/polyvalent cation-sensing receptor regulates vasopressin-elicited water permeability in rat kidney inner medullary collecting duct. J Clin Invest. 1997;99:1399–405.

    Article  PubMed  CAS  Google Scholar 

  18. Vezzoli G, Terranegra A, Arcidiacono T, et al. Calcium kidney stones are associated with a haplotype of the calcium-sensing receptor gene regulatory region. Nephrol Dial Transplant. 2010;25:2245–52.

    Article  PubMed  CAS  Google Scholar 

  19. Reed BY, Heller HJ, Gitomer WL, et al. Mapping a gene defect in absorptive hypercalciuria to chromosome 1q23.3-q24. J Clin Endocrinol Metab. 1999;84:3907–13.

    Article  PubMed  CAS  Google Scholar 

  20. Zerwekh JE, Yu XP, Breslau NA, et al. Vitamin D receptor quantitation in human blood mononuclear cells in health and disease. Mol Cell Endocrinol. 1993;96:1–6.

    Article  PubMed  CAS  Google Scholar 

  21. Scott P, Ouimet D, Valiquette L, et al. Suggestive evidence for a susceptibility gene near the vitamin D receptor locus in idiopathic calcium stone formation. J Am Soc Nephrol. 1999;10:1007–13.

    PubMed  CAS  Google Scholar 

  22. Scott P, Ouimet D, Proulx Y, et al. The 1 alpha-hydroxylase locus is not linked to calcium stone formation or calciuric phenotypes in French-Canadian families. J Am Soc Nephrol. 1998;9:425–32.

    PubMed  CAS  Google Scholar 

  23. Konrad M, Schaller A, Seelow D, et al. Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am J Hum Genet. 2006;79:949–57.

    Article  PubMed  CAS  Google Scholar 

  24. Gambaro G, Vezzoli G, Casari G, et al. Genetics of hypercalciuria and calcium nephrolithiasis: from the rare monogenic to the common polygenic forms. Am J Kidney Dis. 2004;44:963–86.

    Article  PubMed  CAS  Google Scholar 

  25. Besbas N, Ozaltin F, Jeck N, et al. CLCN5 mutation (R347X) associated with hypokalaemic metabolic alkalosis in a Turkish child: an unusual presentation of Dent’s disease. Nephrol Dial Transplant. 2005;20:1476–9.

    Article  PubMed  CAS  Google Scholar 

  26. Hoopes Jr RR, Shrimpton AE, Knohl SJ, et al. Dent disease with mutations in OCRL1. Am J Hum Genet. 2005;76:260–7.

    Article  PubMed  CAS  Google Scholar 

  27. Priè D, Friedlander G. Genetic disorders of renal phosphate transport. N Engl J Med. 2010;362:2399–409.

    Article  PubMed  Google Scholar 

  28. Prié D, Huart V, Bakouh N, et al. Nephrolithiasis and osteoporosis associated with hypophosphatemia caused by mutations in the type 2a sodium-phosphate cotransporter. N Engl J Med. 2002;347:983–91.

    Article  PubMed  Google Scholar 

  29. Sabbagh Y, Jones AO, Tenenhouse HS. PHEXdb, a locus-specific database for mutations causing X-linked hypophosphatemia. Hum Mutat. 2000;16:1–6.

    Article  PubMed  CAS  Google Scholar 

  30. Econs MJ, McEnery PT. Autosomal dominant hypophosphatemic rickets/osteomalacia: clinical characterization of a novel renal phosphate-wasting disorder. J Clin Endocrinol Metab. 1997;82:674–81.

    Article  PubMed  CAS  Google Scholar 

  31. Mayan H, Munter G, Shaharabany M, et al. Hypercalciuria in familial hyperkalemia and hypertension accompanies hyperkalemia and precedes hypertension: description of a large family with the Q565E WNK4 mutation. J Clin Endocrinol Metab. 2004;89:4025–30.

    Article  PubMed  CAS  Google Scholar 

  32. Achard JM, Warnock DG, Disse-Nicodème S, et al. Familial hyperkalemic hypertension: phenotypic analysis in a large family with the WNK1 deletion mutation. Am J Med. 2003;114:495–8.

    Article  PubMed  Google Scholar 

  33. Jiang Y, Ferguson WB, Peng JB. WNK4 enhances TRPV5-mediated calcium transport: potential role in hypercalciuria of familial hyperkalemic hypertension caused by gene mutation of WNK4. Am J Physiol Renal Physiol. 2007;292:F545–54.

    Article  PubMed  CAS  Google Scholar 

  34. Wolf MT, Zalewski I, Martin FC, et al. Mapping a new suggestive gene locus for autosomal dominant nephrolithiasis to chromosome 9q33.2-q34.2 by total genome search for linkage. Nephrol Dial Transplant. 2005;20:909–14.

    Article  PubMed  CAS  Google Scholar 

  35. Fabris A, Bernich P, Abaterusso C, et al. Bone disease in medullary sponge kidney and effect of potassium citrate treatment. Clin J Am Soc Nephrol. 2009;4:1974–9.

    Article  PubMed  CAS  Google Scholar 

  36. Bruce LJ, Cope DL, Jones GK, et al. Familial distal renal tubular acidosis is associated with mutations in the red cell anion exchanger (Band 3, AE1) gene. J Clin Invest. 1997;100:1693–707.

    Article  PubMed  CAS  Google Scholar 

  37. Wrong O, Bruce LJ, Unwin RJ, et al. Band 3 mutations, distal renal tubular acidosis, and southeast Asian ovalocytosis. Kidney Int. 2002;62:10–9.

    Article  PubMed  CAS  Google Scholar 

  38. Tanphaichitr VS, Sumboonnanonda A, Ideguchi H, et al. Novel AE1 mutations in recessive distal renal tubular acidosis. Loss-of-function is rescued by glycophorin a. J Clin Invest. 1998;102:2173–9.

    Article  PubMed  CAS  Google Scholar 

  39. Karet FE, Finberg KE, Nelson RD, et al. Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness. Nat Genet. 1999;21:84–90.

    Article  PubMed  CAS  Google Scholar 

  40. Smith AN, Skaug J, Choate KA, et al. Mutations in ATP6N1B, encoding a new kidney vacuolar proton pump 116-kD subunit, cause recessive distal renal tubular acidosis with preserved hearing. Nat Genet. 2000;26:71–5.

    Article  PubMed  CAS  Google Scholar 

  41. Gambaro G, Feltrin GP, Lupo A, et al. Medullary sponge kidney (Lenarduzzi-Cacchi-Ricci disease): a Padua Medical School discovery in the 1930s. Kidney Int. 2006;69:663–70.

    Article  PubMed  CAS  Google Scholar 

  42. Cameron S. Medullary sponge kidney. In: Davison AM, Cameron JS, Grunfeld J-P, Ponticelli C, Ritz E, Winearls CG, van Ypersele C, editors. Oxford textbook of clinical nephrology. 3rd ed. Oxford: Oxford University Press; 2004. p. 2495–501.

    Google Scholar 

  43. Kuiper JJ. Medullary sponge kidney in three generations. N Y State J Med. 1971;71:2665–9.

    PubMed  CAS  Google Scholar 

  44. Fabris A, Lupo A, Ferraro PM, et al. The medullary sponge kidney is frequently an inherited disorder: a systematic analysis of a large cohort. In: XLVII ERA-EDTA congress, Munich, 25–28 June 2010.

    Google Scholar 

  45. Torregrossa R, Anglani F, Fabris A, et al. Identification of GDNF gene sequence variations in patients with medullary sponge kidney disease. Clin J Am Soc Nephrol. 2010;5(7):1205–10.

    Article  PubMed  CAS  Google Scholar 

  46. Cochat P, Deloraine A, Rotily M, et al. Epidemiology of primary hyperoxaluria type 1. Nephrol Dial Transplant. 1995;10 Suppl 8:3–7.

    Article  PubMed  Google Scholar 

  47. Williams HE, Smith Jr LH. Hyperoxaluria in L-glyceric aciduria: possible pathogenic mechanism. Science. 1971;171:390–1.

    Article  PubMed  CAS  Google Scholar 

  48. Monico CG, Weinstein A, Jiang Z, et al. Phenotypic and functional analysis of human SLC26A6 variants in patients with familial hyperoxaluria and calcium oxalate nephrolithiasis. Am J Kidney Dis. 2008;52:1096–103.

    Article  PubMed  CAS  Google Scholar 

  49. Dello Strologo L, Pras E, Pontesilli C, et al. Comparison between SLC3A1 and SLC7A9 cystinuria patients and carriers: a need for a new classification. J Am Soc Nephrol. 2002;13:2547–53.

    Article  Google Scholar 

  50. Botzenhart E, Vester U, Schmidt C, et al. Cystinuria in children: distribution and frequencies of mutations in the SLC3A1 and SLC7A9 genes. Kidney Int. 2002;62:1136–42.

    Article  PubMed  CAS  Google Scholar 

  51. Tanaka M, Itoh K, Matsushita K, et al. Two male siblings with hereditary renal hypouricemia and exercise-induced ARF. Am J Kidney Dis. 2003;42:1287–92.

    Article  PubMed  Google Scholar 

  52. Ombra MN, Forabosco P, Casula S, et al. Identification of a new candidate locus for uric acid nephrolithiasis. Am J Hum Genet. 2001;68:1119–29.

    Article  PubMed  CAS  Google Scholar 

  53. Carr G, Sayer JA, Simmons NL. Expression and localisation of the pyrophosphate transporter, ANK, in murine kidney cells. Cell Physiol Biochem. 2007;20:507–16.

    Article  PubMed  CAS  Google Scholar 

  54. Jaggi M, Nakagawa Y, Zipperle L, et al. Tamm-Horsfall protein in recurrent calcium kidney stone formers with positive family history: abnormalities in urinary excretion, molecular structure and function. Urol Res. 2007;35:55–62.

    Article  PubMed  CAS  Google Scholar 

  55. Srivastava T, Schwaderer A. Diagnosis and management of hypercalciuria in children. Curr Opin Pediatr. 2009;21:214–9.

    Article  PubMed  Google Scholar 

  56. Resnick M, Pridgen DB, Goodman HO. Genetic predisposition to formation of calcium oxalate renal calculi. J Am Soc Nephrol. 1997;278:1313–8.

    Google Scholar 

  57. Gambaro G, Marchini F, Piccoli A, et al. The abnormal red-cell oxalate transport is a risk factor for idiopathic calcium nephrolithiasis: a prospective study. J Am Soc Nephrol. 1996;7:608–12.

    PubMed  CAS  Google Scholar 

  58. Trinchieri A. Epidemiology of urolithiasis. Arch Ital Urol Androl. 1996;68:203–49.

    PubMed  CAS  Google Scholar 

  59. Bianchi G, Vezzoli G, Cusi D, et al. Abnormal red-cell calcium pump in patients with idiopathic hypercalciuria. N Engl J Med. 1988;319:897–901.

    Article  PubMed  CAS  Google Scholar 

  60. Ioannidis JP, Ntzani EE, Trikalinos TA, et al. Replication validity of genetic association studies. Nat Genet. 2001;29:306–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Manuel Ferraro M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Ferraro, P.M., Gambaro, G. (2012). The Genetics of Kidney Stones. In: Talati, J., Tiselius, HG., Albala, D., YE, Z. (eds) Urolithiasis. Springer, London. https://doi.org/10.1007/978-1-4471-4387-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4387-1_16

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4383-3

  • Online ISBN: 978-1-4471-4387-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics