Skip to main content

Photoacoustic Imaging: Development of Imaging Systems and Molecular Agents

  • Chapter
  • First Online:
Engineering in Translational Medicine
  • 2731 Accesses

Abstract

Photoacoustic imaging is a relatively new imaging modality with great promise to overcome most of the limitation of conventional optical imaging. By leveraging the conversion of short light pulses into ultrasound waves, it is possible to generate three-dimensional maps of a tissue with high spatial resolution and at a high tissue depth of penetration. Since the basic mechanism that gives rise to a photoacoustic signal is light absorption, several endogenous contrasts can be used for photoacoustic imaging of tissues, including hemoglobin and melanin. To allow photoacoustic imaging to reach its full potential, exogenous contrast agents that can target biomolecules in living tissues were developed, enabling molecular imaging studies. This chapter will review the physical basis of photoacoustic imaging, starting with the photoacoustic effect and the conditions needed to generate detectable ultrasonic waves from light excitation of an absorber. The different photoacoustic scanner implementations will then be discussed, including photoacoustic tomography (PAT) and microscopy systems and the biomedical applications to which they are best suited. Finally, the various exogenous contrast agents for photoacoustic imaging will be discussed and a general approach for contrast agent validation will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bell A (1880) On the production and reproduction of sound by light. Am J Sci 305–324

    Google Scholar 

  2. Pramanik M, Wang LV (2009) Thermoacoustic and photoacoustic sensing of temperature. J Biomed Opt 14(5):054024. doi:10.1117/1.3247155

    Article  Google Scholar 

  3. Zhang HF, Maslov K, Stoica G, Wang LV (2006) Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat Biotechnol 24(7):848–851

    Article  Google Scholar 

  4. de la Zerda A, Paulus YM, Teed R, Bodapati S, Dollberg Y, Khuri-Yakub BT, Blumenkranz MS, Moshfeghi DM, Gambhir SS (2010) Photoacoustic ocular imaging. Opt Lett 35(3):270–272

    Article  Google Scholar 

  5. Yang JM, Maslov K, Yang HC, Zhou Q, Shung KK, Wang LV (2009) Photoacoustic endoscopy. Opt Lett 34(10):1591–1593

    Article  Google Scholar 

  6. Zhang EZ, Povazay B, Laufer J, Alex A, Hofer B, Pedley B, Glittenberg C, Treeby B, Cox B, Beard P, Drexler W (2011) Multimodal photoacoustic and optical coherence tomography scanner using an all optical detection scheme for 3D morphological skin imaging. Biomed Opt Express 2(8):2202–2215. doi:10.1364/BOE.2.002202

    Article  Google Scholar 

  7. Jansen K, van der Steen AF, van Beusekom HM, Oosterhuis JW, van Soest G (2011) Intravascular photoacoustic imaging of human coronary atherosclerosis. Opt Lett 36(5):597–599. doi:10.1364/OL.36.000597

    Article  Google Scholar 

  8. Wang X, Pang Y, Ku G, Xie X, Stoica G, Wang LV (2003) Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat Biotechnol 21(7):803–806. doi:10.1038/nbt839

    Article  Google Scholar 

  9. Xu MH, Wang LHV (2006) Photoacoustic imaging in biomedicine. Rev Sci Instrum 77(4):041101–043100

    Article  Google Scholar 

  10. Wang X, Xie X, Ku G, Wang LV, Stoica G (2006) Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography. J Biomed Opt 11(2):024015

    Article  Google Scholar 

  11. Oh JT, Li ML, Zhang HF, Maslov K, Stoica G, Wang LV (2006) Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy. J Biomed Opt 11(3):034032

    Article  Google Scholar 

  12. Jiao S, Jiang M, Hu J, Fawzi A, Zhou Q, Shung KK, Puliafito CA, Zhang HF (2010) Photoacoustic ophthalmoscopy for in vivo retinal imaging. Opt Express 18(4):3967–3972. doi:10.1364/OE.18.003967

    Article  Google Scholar 

  13. Zhang HF, Maslov K, Stoica G, Wang LV (2006) Imaging acute thermal burns by photoacoustic microscopy. J Biomed Opt 11(5):054033

    Article  Google Scholar 

  14. Wang LV, Hu S (2012) Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335(6075):1458–1462. doi:10.1126/science.1216210

    Article  Google Scholar 

  15. Beard P (2011) Biomedical photoacoustic imaging. Interface Focus 1(4):602–631. doi:10.1098/rsfs.2011.0028

    Article  Google Scholar 

  16. Kruger RA, Lam RB, Reinecke DR, Del Rio SP, Doyle RP (2010) Photoacoustic angiography of the breast. Med Phys 37(11):6096–6100

    Article  Google Scholar 

  17. Lam RB, Kruger RA, Reinecke DR, DelRio SP, Thornton MM, Picot PA, Morgan TG (2010) Dynamic optical angiography of mouse anatomy using radial projections. In: Proceedings of SPIE 7564, photons plus ultrasound: imaging and sensing 2010, pp 756405–756405. doi:10.1117/12.841024

  18. Kruger RA, Kiser WL, Reinecke DR, Kruger GA, Miller KD (2003) Thermoacoustic molecular imaging of small animals. Mol Imaging 2(2):113–123

    Article  Google Scholar 

  19. Brecht HP, Su R, Fronheiser M, Ermilov SA, Conjusteau A, Oraevsky AA (2009) Whole-body three-dimensional optoacoustic tomography system for small animals. J Biomed Opt 14(6):064007. doi:10.1117/1.3259361

    Article  Google Scholar 

  20. Wang X, Pang Y, Ku G, Stoica G, Wang LV (2003) Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact. Opt Lett 28(19):1739–1741

    Article  Google Scholar 

  21. Buehler A, Herzog E, Razansky D, Ntziachristos V (2010) Video rate optoacoustic tomography of mouse kidney perfusion. Opt Lett 35(14):2475–2477. doi:10.1364/OL.35.002475

    Article  Google Scholar 

  22. Lao Y, Xing D, Yang S, Xiang L (2008) Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth. Phys Med Biol 53(15):4203–4212. doi:10.1088/0031-9155/53/15/013

    Article  Google Scholar 

  23. Wang X, Chamberland DL, Jamadar DA (2007) Noninvasive photoacoustic tomography of human peripheral joints toward diagnosis of inflammatory arthritis. Opt Lett 32(20):3002–3004

    Article  Google Scholar 

  24. Li C, Aguirre A, Gamelin J, Maurudis A, Zhu Q, Wang LV (2010) Real-time photoacoustic tomography of cortical hemodynamics in small animals. J Biomed Opt 15(1):010509. doi:10.1117/1.3302807

    Article  Google Scholar 

  25. Zemp RJ, Song L, Bitton R, Shung KK, Wang LV (2008) Realtime photoacoustic microscopy of murine cardiovascular dynamics. Opt Express 16(22):18551–18556. doi:173047

    Article  Google Scholar 

  26. Vaithilingam S, Ma TJ, Furukawa Y, Wygant IO, Zhuang X, De La Zerda A, Oralkan O, Kamaya A, Gambhir SS, Jeffrey RB Jr, Khuri-Yakub BT (2009) Three-dimensional photoacoustic imaging using a two-dimensional CMUT array. IEEE Trans Ultrason Ferroelectr Freq Control 56(11):2411–2419. doi:10.1109/TUFFc.2009.1329

    Article  Google Scholar 

  27. Kothapalli SR, Ma TJ, Vaithilingam S, Oralkan O, Khuri-Yakub BT, Gambhir SS (2012) Deep tissue photoacoustic imaging using a miniaturized 2-D capacitive micromachined ultrasonic transducer array. IEEE Trans Bio-med Eng 59(5):1199–1204. doi:10.1109/TBME.2012.2183593

    Article  Google Scholar 

  28. Kim C, Erpelding TN, Jankovic L, Pashley MD, Wang LV (2010) Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system. Biomed Opt Express 1(1):278–284. doi:10.1364/BOE.1.000278

    Article  Google Scholar 

  29. Niederhauser JJ, Jaeger M, Lemor R, Weber P, Frenz M (2005) Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo. IEEE Trans Med Imaging 24(4):436–440

    Article  Google Scholar 

  30. Song L, Maslov K, Shung KK, Wang LV (2010) Ultrasound-array-based real-time photoacoustic microscopy of human pulsatile dynamics in vivo. J Biomed Opt 15(2):021303. doi:10.1117/1.3333545

    Article  Google Scholar 

  31. Song L, Maslov K, Bitton R, Shung KK, Wang LV (2008) Fast 3-D dark-field reflection-mode photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array. J Biomed Opt 13(5):054028. doi:10.1117/1.2976141

    Article  Google Scholar 

  32. Aguirre A, Guo P, Gamelin J, Yan S, Sanders MM, Brewer M, Zhu Q (2009) Coregistered three-dimensional ultrasound and photoacoustic imaging system for ovarian tissue characterization. J Biomed Opt 14(5):054014. doi:10.1117/1.3233916

    Article  Google Scholar 

  33. Fronheiser MP, Ermilov SA, Brecht HP, Conjusteau A, Su R, Mehta K, Oraevsky AA (2010) Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature. J Biomed Opt 15(2):021305. doi:10.1117/1.3370336

    Article  Google Scholar 

  34. Beard PC, Perennes F, Mills TN (1999) Transduction mechanisms of the Fabry-Perot polymer film sensing concept for wideband ultrasound detection. IEEE Trans Ultrason Ferroelectr Freq Control 46(6):1575–1582. doi:10.1109/58.808883

    Article  Google Scholar 

  35. Zhang E, Laufer J, Beard P (2008) Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues. Appl Opt 47(4):561–577

    Article  Google Scholar 

  36. Lamont M, Beard P (2006) 2D imaging of ultrasound fields using CCD array to map output of Fabry-Perot polymer film sensor. Electron Lett 42(3):187–189

    Article  Google Scholar 

  37. Zhang EZ, Laufer JG, Pedley RB, Beard PC (2009) In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy. Phys Med Biol 54(4):1035–1046. doi:10.1088/0031-9155/54/4/014

    Article  Google Scholar 

  38. Laufer J, Zhang E, Raivich G, Beard P (2009) Three-dimensional noninvasive imaging of the vasculature in the mouse brain using a high resolution photoacoustic scanner. Appl Opt 48(10):D299–D306

    Article  Google Scholar 

  39. Favazza CP, Jassim O, Cornelius LA, Wang LV (2011) In vivo photoacoustic microscopy of human cutaneous microvasculature and a nevus. J Biomed Opt 16(1):016015. doi:10.1117/1.3528661

    Article  Google Scholar 

  40. Vaithilingam S, Ma T-J, Furukawa Y, Zerda Adl, Oralkan O, Kamaya A, Keren S, Gambhir SS, Jr RBJ, Khuri-Yakub BT (2007) A co-axial scanning acoustic and photoacoustic microscope. In: Proceedings of IEEE ultrasonics symposium, 2007, pp 2413–2416

    Google Scholar 

  41. de la Zerda A, Zavaleta C, Keren S, Vaithilingam S, Bodapati S, Liu Z, Levi J, Smith BR, Ma TJ, Oralkan O, Cheng Z, Chen X, Dai H, Khuri-Yakub BT, Gambhir SS (2008) Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat Nanotechnol 3(9):557–562

    Article  Google Scholar 

  42. Hu S, Rao B, Maslov K, Wang LV (2010) Label-free photoacoustic ophthalmic angiography. Opt Lett 35(1):1–3. doi:10.1364/OL.35.000001

    Article  Google Scholar 

  43. Zhang HF, Puliafito CA, Jiao S (2011) Photoacoustic ophthalmoscopy for in vivo retinal imaging: current status and prospects. Ophthalmic Surg, Lasers Imaging: Official J Int Soc Imaging Eye 42(Suppl):S106–S115. doi:10.3928/15428877-20110627-10

    Article  Google Scholar 

  44. Hu S, Maslov K, Wang LV (2011) Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed. Opt Lett 36(7):1134–1136. doi:10.1364/OL.36.001134

    Article  Google Scholar 

  45. Maslov K, Zhang HF, Hu S, Wang LV (2008) Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries. Opt Lett 33(9):929–931

    Article  Google Scholar 

  46. Wang L, Maslov K, Wang LV (2013) Single-cell label-free photoacoustic flowoxigraphy in vivo. Proc Natl Acad Sci USA 110(15):5759–5764. doi:10.1073/pnas.1215578110

    Article  Google Scholar 

  47. American National Standards Institute (2000) American national standard for the safe use of lasers, ANSI Standard Z1361-2000, ANSI, Inc, New York

    Google Scholar 

  48. Jiao S, Xie Z, Zhang HF, Puliafito CA (2009) Simultaneous multimodal imaging with integrated photoacoustic microscopy and optical coherence tomography. Opt Lett 34(19):2961–2963

    Article  Google Scholar 

  49. Kim C, Favazza C, Wang LV (2010) In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths. Chem Rev 110(5):2756–2782. doi:10.1021/cr900266s

    Article  Google Scholar 

  50. Xiang L, Yuan Y, Xing D, Ou Z, Yang S, Zhou F (2009) Photoacoustic molecular imaging with antibody-functionalized single-walled carbon nanotubes for early diagnosis of tumor. J Biomed Opt 14(2):021008. doi:10.1117/1.3078809

    Article  Google Scholar 

  51. Kircher MF, de la Zerda A, Jokerst JV, Zavaleta CL, Kempen PJ, Mittra E, Pitter K, Huang R, Campos C, Habte F, Sinclair R, Brennan CW, Mellinghoff IK, Holland EC, Gambhir SS (2012) A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat Med 18(5):829–834. doi:10.1038/nm.2721

    Article  Google Scholar 

  52. de la Zerda A, Kim J-W, Galanzha EI, Gambhir SS, Zharov VP (2011) Advanced contrast nanoagents for photoacoustic molecular imaging, cytometry, blood test and photothermal theranostics. Contrast Media Mol Imaging 6(5):346–369

    Article  Google Scholar 

  53. Zharov VP, Galanzha EI, Shashkov EV, Kim JW, Khlebtsov NG, Tuchin VV (2007) Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo. J Biomed Opt 12(5):051503. doi:10.1117/1.2793746

    Article  Google Scholar 

  54. Shashkov EV, Everts M, Galanzha EI, Zharov VP (2008) Quantum dots as multimodal photoacoustic and photothermal contrast agents. Nano Lett 8(11):3953–3958. doi:10.1021/nl802442x

    Article  Google Scholar 

  55. Pustovalov V, Astafyeva LG, Galanzha E, Zharov VP (2010) Thermo-optical analysis and selection of the properties of absorbing nanoparticles for laser applications in cancer nanotechnology. Cancer Nano 1(1–6):35–46. doi:10.1007/s12645-010-0005-1

    Article  Google Scholar 

  56. Pustovalov VK, Smetannikov AS, Zharov VP (2008) Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses. Laser Phys Lett 5(11):775–792. doi:10.1002/lapl.200810072

    Article  Google Scholar 

  57. Razansky D, Distel M, Vinegoni C, Ma R, Perrimon N, Koster RW, Ntziachristos V (2009) Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo. Nat Photon 3(7):412–417

    Article  Google Scholar 

  58. Razansky D, Vinegoni C, Ntziachristos V (2007) Multispectral photoacoustic imaging of fluorochromes in small animals. Opt Lett 32(19):2891–2893

    Article  Google Scholar 

  59. Jain RK, Stylianopoulos T (2010) Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 7(11):653–664. doi:10.1038/nrclinonc.2010.139

    Article  Google Scholar 

  60. Song KH, Stein EW, Margenthaler JA, Wang LV (2008) Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model. J Biomed Opt 13(5):054033–054033. doi:10.1117/1.2976427

    Article  Google Scholar 

  61. Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X, Chen X, Dai H (2007) In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2(1):47–52

    Article  Google Scholar 

  62. Keren S, Zavaleta C, Cheng Z, de la Zerda A, Gheysens O, Gambhir SS (2008) Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proc Natl Acad Sci 105(15):5844–5849. doi:10.1073/pnas.0710575105

    Article  Google Scholar 

  63. Zavaleta C, de la Zerda A, Liu Z, Keren S, Cheng Z, Schipper M, Chen X, Dai H, Gambhir SS (2008) Noninvasive Raman spectroscopy in living mice for evaluation of tumor targeting with carbon nanotubes. Nano Lett 8(9):2800–2805

    Article  Google Scholar 

  64. de la Zerda A, Liu Z, Bodapati S, Teed R, Vaithilingam S, Khuri-Yakub BT, Chen X, Dai H, Gambhir SS (2010) Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice. Nano Lett 10(6):2168–2172. doi:10.1021/nl100890d

    Article  Google Scholar 

  65. de la Zerda A, Bodapati S, Teed R, May SY, Tabakman SM, Liu Z, Khuri-Yakub BT, Chen X, Dai H, Gambhir SS (2012) Family of enhanced photoacoustic imaging agents for high-sensitivity and multiplexing studies in living mice. ACS Nano 6(6):4694–4701. doi:10.1021/nn204352r

    Article  Google Scholar 

  66. Kim G, Huang SW, Day KC, O’Donnell M, Agayan RR, Day MA, Kopelman R, Ashkenazi S (2007) Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging. J Biomed Opt 12(4):044020

    Article  Google Scholar 

  67. Rajian JR, Fabiilli ML, Fowlkes JB, Carson PL, Wang X (2011) Drug delivery monitoring by photoacoustic tomography with an ICG encapsulated double emulsion. Opt Express 19(15):14335–14347. doi:10.1364/OE.19.014335

    Article  Google Scholar 

  68. Xu RX (2011) Multifunctional microbubbles and nanobubbles for photoacoustic imaging. Contrast Media Mol Imaging 6(5):401–411. doi:10.1002/cmmi.442

    Article  Google Scholar 

  69. Schipper ML, Nakayama-Ratchford N, Davis CR, Kam NWS, Chu P, Liu Z, Sun X, Dai H, Gambhir SS (2008) A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat Nano 3(4):216–221

    Article  Google Scholar 

  70. Kim JW, Galanzha EI, Shashkov EV, Moon HM, Zharov VP (2009) Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nat Nanotechnol 4(10):688–694. doi:nnano.2009.231 1038/nnano.2009.231

    Article  Google Scholar 

  71. Kim JW, Moon HM, Benamara M, Sakon J, Salamo GJ, Zharov VP (2010) Aqueous-phase synthesis of monodisperse plasmonic gold nanocrystals using shortened single-walled carbon nanotubes. Chem Commun (Camb) 46(38):7142–7144. doi:10.1039/c0cc00218f

    Article  Google Scholar 

  72. Galanzha EI, Kokoska MS, Shashkov EV, Kim JW, Tuchin VV, Zharov VP (2009) In vivo fiber-based multicolor photoacoustic detection and photothermal purging of metastasis in sentinel lymph nodes targeted by nanoparticles. J Biophotonics 2(8–9):528–539. doi:10.1002/jbio.200910046

    Article  Google Scholar 

  73. Zhang Q, Iwakuma N, Sharma P, Moudgil BM, Wu C, McNeill J, Jiang H, Grobmyer SR (2009) Gold nanoparticles as a contrast agent for in vivo tumor imaging with photoacoustic tomography. Nanotechnology 20(39):395102

    Article  Google Scholar 

  74. Wang Y, Xie X, Wang X, Ku G, Gill KL, O’Neal DP, Stoica G, Wang LV (2004) Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain. Nano Lett 4(9):1689–1692. doi:10.1021/nl049126a

    Article  Google Scholar 

  75. Luke GP, Yeager D, Emelianov SY (2012) Biomedical applications of photoacoustic imaging with exogenous contrast agents. Ann Biomed Eng 40(2):422–437. doi:10.1007/s10439-011-0449-4

    Article  Google Scholar 

  76. Manohar S, Ungureanu C, Van Leeuwen TG (2011) Gold nanorods as molecular contrast agents in photoacoustic imaging: the promises and the caveats. Contrast Media Mol Imaging 6(5):389–400. doi:10.1002/cmmi.454

    Article  Google Scholar 

  77. Li W, Brown PK, Wang LV, Xia Y (2011) Gold nanocages as contrast agents for photoacoustic imaging. Contrast Media Mol Imaging 6(5):370–377. doi:10.1002/cmmi.439

    Article  Google Scholar 

  78. Pan D, Pramanik M, Senpan A, Yang X, Song KH, Scott MJ, Zhang H, Gaffney PJ, Wickline SA, Wang LV, Lanza GM (2009) Molecular photoacoustic tomography with colloidal nanobeacons. Angew Chem Int Ed Engl 48(23):4170–4173. doi:10.1002/anie.200805947

    Article  Google Scholar 

  79. Bouchard LS, Anwar MS, Liu GL, Hann B, Xie ZH, Gray JW, Wang X, Pines A, Chen FF (2009) Picomolar sensitivity MRI and photoacoustic imaging of cobalt nanoparticles. Proc Natl Acad Sci USA 106(11):4085–4089

    Article  Google Scholar 

  80. Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38(6):1759–1782. doi:10.1039/b806051g

    Article  Google Scholar 

  81. Wang B, Yantsen E, Larson T, Karpiouk AB, Sethuraman S, Su JL, Sokolov K, Emelianov SY (2009) Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques. Nano Lett 9(6):2212–2217. doi:10.1021/nl801852e

    Article  Google Scholar 

  82. Zavaleta CL, Smith BR, Walton I, Doering W, Davis G, Shojaei B, Natan MJ, Gambhir SS (2009) Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. Proc Natl Acad Sci USA 106(32):13511–13516

    Article  Google Scholar 

  83. Deshpande N, Needles A, Willmann JK (2010) Molecular ultrasound imaging: current status and future directions. Clin Radiol 65(7):567–581. doi:10.1016/j.crad.2010.02.013

    Article  Google Scholar 

  84. Kou L, Labrie D, Chylek P (1993) Refractive indices of water and ice in the 0.65- to 2.5-micron spectral range. Appl Opt 32(19):3531–3540. doi:10.1364/AO.32.003531

    Article  Google Scholar 

  85. Xie Z, Jiao S, Zhang HF, Puliafito CA (2009) Laser-scanning optical-resolution photoacoustic microscopy. Opt Lett 34(12):1771–1773

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam de la Zerda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

de la Zerda, A. (2014). Photoacoustic Imaging: Development of Imaging Systems and Molecular Agents. In: Cai, W. (eds) Engineering in Translational Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-4372-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4372-7_29

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4371-0

  • Online ISBN: 978-1-4471-4372-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics