Skip to main content

Engineering Nanomaterials for Biosensors and Therapeutics

  • Chapter
  • First Online:
Engineering in Translational Medicine

Abstract

Nanomaterials have attracted lots of recent research attention as they possess unique photophysical, magnetic, and thermal properties with the potential of being engineered for various biomedical theranostic applications. The objective of this book chapter is to provide a timely overview on the synthetic methodology, surface engineering, physiological itinerary, and theranostic applications for the nanophases and nanostructures consisting of inorganic and/or organic materials. This chapter starts with an introduction, followed by a brief review of the applications and preparative methods of the inorganic nanomaterials with surface plasmon resonance, photoluminescence, magnetic, and bioactive properties. The effects of surface modification with polymers and morphology on the physiological itinerary and toxicity of the nanomaterials are then discussed to help the design of vehicles for targeted tissue imaging and drug delivery. Finally, examples of several promising nanotechnologies and theranostic applications are given including biosensors, magnetic hyperthermia, and photodynamic therapy (PDT) for tumor treatment. This chapter ends with a conclusion and future perspective section. To make use of all the innovative ideas and demonstrative prove-of-principles of nanomaterials for practical biomedical applications, it is absolutely necessary to emphasize and expand efforts on their translational research and development, including clinical studies and large-scale manufacturing of these novel engineered nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Patra CR, Bhattacharya R, Mukhopadhyay D, Mukherjee P (2010) Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. Adv Drug Deliv Rev 62(3):346–361

    Article  Google Scholar 

  2. Nguyen DT, Kim D-J, Kim K-S (2011) Controlled synthesis and biomolecular probe application of gold nanoparticles. Micron 42(3):207–227

    Article  Google Scholar 

  3. Zhao P, Li N, Astruc D (2013) State of the art in gold nanoparticle synthesis. Coord Chem Rev 257(3):638–665

    Article  Google Scholar 

  4. Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60(11):1307–1315

    Article  Google Scholar 

  5. Murphy CJ, Thompson LB, Chernak DJ, Yang JA, Sivapalan ST, Boulos SP et al (2011) Gold nanorod crystal growth: from seed-mediated synthesis to nanoscale sculpting. Curr Opin Colloid Interface Sci 16(2):128–134

    Article  Google Scholar 

  6. Lu F, Doane TL, Zhu J–J, Burda C (2012) Gold nanoparticles for diagnostic sensing and therapy. Inorg Chim Acta 393:142–153

    Article  Google Scholar 

  7. Lu W, Huang Q, Ku G, Wen X, Zhou M, Guzatov D et al (2010) Photoacoustic imaging of living mouse brain vasculature using hollow gold nanospheres. Biomaterials 31(9):2617–2626

    Article  Google Scholar 

  8. Patra CR, Bhattacharya R, Mukhopadhyay D, Mukherjee P (2010) Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. Adv Drug Deliv Rev 62(3):346–361

    Article  Google Scholar 

  9. Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM, Mulvaney P (2005) Gold nanorods: Synthesis, characterization and applications. Coord Chem Rev 249(17–18):1870–1901

    Article  Google Scholar 

  10. Orendorff CJ, Gearheart L, Jana NR, Murphy CJ (2006) Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. Phys Chem Chem Phys 8(1):165–170

    Article  Google Scholar 

  11. Nikoobakht B, Burda C, Braun M, Hun M, El-Sayed MA (2002) The quenching of CdSe quantum dots photoluminescence by gold nanoparticles in solution. Photochem Photobio 75(6):591–597

    Article  Google Scholar 

  12. Meng XK, Tang SC, Vongehr S (2010) A review on diverse silver nanostructures. J Mater Sci Tech 26(6):487–522

    Article  Google Scholar 

  13. Kalishwaralal K, BarathManiKanth S, Pandian SRK, Deepak V, Gurunathan S (2010) Silver nano—a trove for retinal therapies. J Controlled Release 145(2):76–90

    Article  Google Scholar 

  14. Besinis A, Peralta TD, Handy RD (2012) The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology Nov 15. (Epub ahead of print)

    Google Scholar 

  15. Drbohlavova J, Adam V, Kizek R, Hubalek J (2009) Quantum dots—characterization, preparation and usage in biological systems. Int Mol Sci 10(2):656–673

    Article  Google Scholar 

  16. Byers RJ, Hitchman ER (2011) Quantum dots brighten biological imaging. Prog Histochem Cytochem 45(4):201–237

    Article  Google Scholar 

  17. Durgadas CV, Sreenivasan K, Sharma CP (2012) Bright blue emitting CuSe/ZnS/silica core/shell/shell quantum dots and their biocompatibility. Biomaterials 33(27):6420–6429

    Article  Google Scholar 

  18. Peng ZA, Peng X (2001) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc 123(1):183–184

    Article  Google Scholar 

  19. Aldana J, Wang YA, Peng X (2001) Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J Am Chem Soc 123(36):8844–8850

    Article  Google Scholar 

  20. Weng J, Song X, Li L, Qian H, Chen K, Xu X et al (2006) Highly luminescent CdTe quantum dots prepared in aqueous phase as an alternative fluorescent probe for cell imaging. Talanta 70(2):397–402

    Article  Google Scholar 

  21. Yu WW (2008) Semiconductor quantum dots: synthesis and water-solubilization for biomedical applications. Expert Opin Biol Ther 8(10):1571–1581

    Article  Google Scholar 

  22. Mahmoudi M, Sant S, Wang B, Laurent S, Sen T (2011) Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 63(1–2):24–46

    Article  Google Scholar 

  23. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021

    Article  Google Scholar 

  24. Mandel K, Hutter F, Gellermann C, Sextl G (2011) Synthesis and stabilisation of superparamagnetic iron oxide nanoparticle dispersions. Colloids Surf A 390(1–3):173–178

    Article  Google Scholar 

  25. Dorozhkin SV (2010) Nanosized and nanocrystalline calcium orthophosphates. Acta Biomater 6(3):715–734

    Article  Google Scholar 

  26. Liu TY, Chen SY, Liu DM, Liou SC (2005) On the study of BSA-loaded calcium-deficient hydroxyapatite nano-carriers for controlled drug delivery. J Controlled Release 107(1):112–121

    Article  Google Scholar 

  27. Liu TY, Chen SY, Liu DM (2004) Influence of the aspect ratio of bioactive nanofillers on rheological behavior of PMMA-based orthopedic materials. J Biomed Mater Res B Appl Biomater 71(1):116–122

    Article  Google Scholar 

  28. Alves Cardoso D, Jansen JA, Leeuwenburgh SC (2012) Synthesis and application of nanostructured calcium phosphate ceramics for bone regeneration. J Biomed Mater Res B Appl Biomater 100(8):2316–2326

    Article  Google Scholar 

  29. Liu DM, Troczynski T, Tseng WJ (2001) Water-based sol gel synthesis of hydroxyapatite: process development. Biomaterials 22(13):1721–1730

    Article  Google Scholar 

  30. Liu TY, Chen SY, Li JH, Liu DM (2006) Study on drug release behaviour of CDHA/chitosan nanocomposites–effect of CDHA nanoparticles. J Controlled Release 112(1):88–95

    Article  MathSciNet  Google Scholar 

  31. Nishiyama N, Kataoka K (2006) Nanostructured devices based on block copolymer assemblies for drug delivery: designing structures for enhanced drug function. Adv Polym Sci 193:67–101

    Article  Google Scholar 

  32. Dunn SE, Brindley A, Davis SS, Davies MC, Illum L (1994) The effect of PEG surface density on the in vitro cell interaction and in vitro biodistribution. Pharm Res 11:1016–1022

    Article  Google Scholar 

  33. Stolnik S, Illum L, Davis SS (1995) Long circulating microparticulate drug carriers. Adv Drug Deliv Rev 16:195–214

    Article  Google Scholar 

  34. Mosqueria VCF, Legrand P, Gulik A, Bourdon O, Gref R, Labarre D, Barratt G (2001) Relationship between complement activation, cellular uptake and surface physicochemical aspects of novel PEG-modified nanocapsules. Biomaterials 22:2967–2979

    Article  Google Scholar 

  35. Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE (2009) Nanoparticles interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61:428–437

    Article  Google Scholar 

  36. Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharmacol 5:505–515

    Article  Google Scholar 

  37. Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, Discher DE (2007) Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotech 2:249–255

    Article  Google Scholar 

  38. Akiyama Y, Mori T, Katayama Y, Niidome T (2009) The effects of PEG grafting level and injection dose on gold nanorod biodistribution in the tumor-bearing mice. J Controlled Release 139:81–84

    Article  Google Scholar 

  39. Zhang G, Yang Z, Lu W, Zhang R, Huang Q, Tian M, Li L, Liang D, Li C (2009) Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice. Biomaterials 30:1928–1936

    Article  Google Scholar 

  40. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392

    Google Scholar 

  41. Maeda H (2001) SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotheraphy. Adv Drug Deliv Rev 46:169–185

    Article  Google Scholar 

  42. Hobbs SK, Monsky WL, Yuan F, Gregory Roberts W, Griffith L, Torchilin VP, Jain RK (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA 95:4607–4612

    Article  Google Scholar 

  43. Perrault SD, Walkey C, Jennings T, Fischer HC, Chan WCW (2009) Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett 9:1909–1915

    Article  Google Scholar 

  44. Gao H, Shi W, Freund LB (2005) Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci USA 102:9469–9474

    Article  Google Scholar 

  45. Bao G, Bao XR (2005) Shedding light on the dynamics of endocytosis and viral budding. Proc Natl Acad Sci USA 102:9997–9998

    Article  Google Scholar 

  46. Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668

    Article  Google Scholar 

  47. Chithrani BD, Chan WCW (2007) Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7:1542–1550

    Article  Google Scholar 

  48. Jiang W, Kim BYS, Rutka JT, Chan WCW (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotech 3:145–150

    Article  Google Scholar 

  49. Harush-Frenkel O, Debotton N, Benita S, Altschuler Y (2007) Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem Biophys Res Commun 353:26–32

    Article  Google Scholar 

  50. Zhang LW, Monteiro-Riviere NA (2009) Mechanisms of quantum dot nanoparticle cellular uptake. Toxicol Sci 110:138–155

    Google Scholar 

  51. De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJAM, Geertsma RE (2008) Particles size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29:1912–1919

    Article  Google Scholar 

  52. Lipka J, Semmler-Behnke M, Sperling RA, Wenk A, Takenaka S, Schleh C, Kissel T, Parak WJ, Kreyling WG (2010) Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials 31:6574–6581

    Article  Google Scholar 

  53. Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X, Chen X, Dai H (2007) In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2:47–52

    Article  Google Scholar 

  54. DeNardo SJ, DeNardo GL, Natarajan A, Miers LA, Foreman AR, Gruettner C, Adamson GN, Ivkov R (2007) Thermal dosimetry predictive of efficacy of 111In-ChL6 nanoparticle AMF-induced thermoablative therapy for human breast cancer in mice. J Nucl Med 48:437–444

    Google Scholar 

  55. Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18

    Article  Google Scholar 

  56. Gupta AK, Gupta M (2005) Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 26:1565–1573

    Article  Google Scholar 

  57. Paul KG, Frigo TB, Groman JY, Groman EV (2004) Synthesis of ultrasmall super-paramagnetic iron oxides using reduced polysaccharides. Bioconjug Chem 15:394–401

    Article  Google Scholar 

  58. Tiefenauer LX, Tschirky A, Ku¨hne G, Andres RY (1996) In vivo evaluation of magnetite nanoparticles for use as a tumor contrast agent in MRI. Magn Reson Imaging 14:391–402

    Article  Google Scholar 

  59. Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318

    Google Scholar 

  60. Massia SP, Stark J, Letbetter DS (2000) Surface-immobilized dextran limits cell adhesion and spreading. Biomaterials 21:2253–2261

    Article  Google Scholar 

  61. Jia Z, Yujun W, Yangcheng L, Jingyu M, Guangsheng L (2006) In situ preparation of magnetic chitosan/Fe3O4 composite nanoparticles in tiny pools of water-in-oil microemulsion. React Funct Polym 66:1552–1558

    Article  Google Scholar 

  62. Sipos P, Berkesi O, Tombacz E, St. Pierre TG, Webb J (2003) Formation of spherical iron(III) oxyhydroxide nanoparticles sterically stabilized by chitosan in aqueous solutions. J Inorg Biochem 95:55–63

    Article  Google Scholar 

  63. Tan WB, Zhang Y (2005) Multifunctional quantum-dot-based magnetic chitosan nanobeads. Adv Mater 17:2375–2380

    Article  MathSciNet  Google Scholar 

  64. Star A, Han TR, Gabriel JCP, Bradley K, Gruner G (2003) Interaction of aromatic compounds with carbon nanotubes: correlation to the Hammett parameter of the substituent and measured carbon nanotube FET response. Nano Lett 3:1421–1423

    Article  Google Scholar 

  65. Lin Z, Cui S, Zhang H, Chen Q, Yang B, Su X, Zhang J, Jin Q (2003) Studies on quantum dots synthesized in aqueous solution for biological labeling via electrostatic interaction. Anal Biochem 319:239–243

    Article  Google Scholar 

  66. Schaaff TG, Knight G, Shafigullin MN, Borkman RF, Whetten RL (1998) Isolation and selected properties of a 10.4 kDa gold: glutathione cluster compound. J Phys Chem B 102:10643–10646

    Article  Google Scholar 

  67. Ghosh SK, Pal T (2007) Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles: From Theory to Applications. Chem Rev 107:4797–4862

    Article  Google Scholar 

  68. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  Google Scholar 

  69. Elghanian R, Storhoff JJ, Mucic RC et al (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081

    Article  Google Scholar 

  70. Storhoff JJ, Elghanian R, Mucic RC et al (1998) One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc 120:1959–1964

    Article  Google Scholar 

  71. Nam JM, Thaxton CS, Mirkin CA (2003) Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301:1884–1886

    Article  Google Scholar 

  72. Stoeva SI, Lee JS, Smith JE et al (2006) Multiplexed detection of protein cancer markers with biobarcoded nanoparticle probes. J Am Chem Soc 128:8378–8379

    Article  Google Scholar 

  73. Chen SJ, Huang YF, Huang CC et al (2008) Colorimetric determination of urinary adenosine using aptamer-modified gold nanoparticles. Biosens Bioelectron 23:1749–1753

    Article  Google Scholar 

  74. Huang CC, Huang YF, Cao ZT et al (2005) Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Anal Chem 77:5735–5741

    Article  Google Scholar 

  75. Aili D, Selegard R, Baltzer L et al (2009) Colorimetric protein sensing by controlled assembly of gold nanoparticles functionalized with synthetic receptors. Small 5:2445–24512

    Article  Google Scholar 

  76. Guarise C, Pasquato L, Filippis V et al (2006) Gold nanoparticles-based protease assay. Proc Natl Acad Sci USA 103:3978–3982

    Article  Google Scholar 

  77. Hirsch LR, Jackson JB, Lee A et al (2003) A whole blood immunoassay using gold nanoshells. Anal Chem 75:2377–2381

    Article  Google Scholar 

  78. Liu X, Dai Q, Austin L et al (2008) A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. J Am Chem Soc 130:2780–2782

    Article  Google Scholar 

  79. Thompson DG, Enright A, Faulds K et al (2008) Ultrasensitive DNA detection using oligonucleotide − silver nanoparticle conjugates. Anal Chem 80:2805–2810

    Article  Google Scholar 

  80. Liu SH, Zhang ZH, Han MY et al (2005) Gram-scale synthesis and biofunctionalization of silica-coated silver nanoparticles for fast colorimetric DNA detection. Anal Chem 77:2595–2600

    Article  Google Scholar 

  81. Zhao W, Brook MA (2008) Design of gold nanoparticle-based colorimetric biosensing assays. Chem Bio Chem 9:2363–2371

    Article  Google Scholar 

  82. Lee JS, Ulmann PA, Han MS et al (2008) A DNA-gold nanoparticle-based colorimetric competition assay for the detection of cysteine. Nano Lett 8:529–533

    Article  Google Scholar 

  83. Hurst SJ, Han MS, Lytton-Jean AKR et al (2007) Screening the sequence selectivity of DNA-binding molecules using a gold nanoparticle-based colorimetric approach. Anal Chem 79:7201–7205

    Article  Google Scholar 

  84. Han MS, Lytton-Jean AKR, Oh BK et al (2006) Colorimetric screening of DNA-binding molecules with gold nanoparticle probes. Angew Chem Int Ed 45:1807–1810

    Article  Google Scholar 

  85. Lee JS, Han MS, Mirkin CA (2007) Colorimetric detection of mercuric ion (Hg2 +) in aqueous media using DNA-functionalized gold nanoparticles. Angew Chem Int Ed 46:4093–4096

    Article  Google Scholar 

  86. Xu X, Han MS, Mirkin CA (2007) A gold-nanoparticle-based real-time colorimetric screening method for endonuclease activity and inhibition. Angew Chem Int Ed 46:3468–3470

    Article  Google Scholar 

  87. Mucic RC, Storhoff JJ, Mirkin DA (1998) DNA-directed synthesis of binary nanoparticle network materials. J Am Chem Soc 120:12674–12675

    Article  Google Scholar 

  88. Wang Y, Lee K, Irudayaraj J (2010) SERS aptasensor from nanorod–nanoparticle junction for protein detection. Chem Commun 46:613–615

    Article  Google Scholar 

  89. Tan YN, Su X, Zhu Y et al (2010) Sensing of transcription factor through controlled-assembly of metal nanoparticles modified with segmented DNA elements. ACS Nano 4:5101–5110

    Article  Google Scholar 

  90. Wang G, Chen Z, Chen L (2011) Mesoporous silica-coated gold nanorods: towards sensitive colorimetric sensing of ascorbic acid via target-induced silver overcoating. Nanoscale 3:1756–1759

    Article  Google Scholar 

  91. Chai F, Wang CG, Wang TT, Li L et al (2010) Colorimetric detection of Pb2+ using glutathione a functionalized gold nanoparticles. ACS Appl Mater Interfaces 2:1466–1470

    Article  Google Scholar 

  92. Huang KW, Yu CJ, Tseng WL (2010) Sensitivity enhancement in the colorimetric detection of lead(II) ion using gallic acid–capped gold nanoparticles: Improving size distribution and minimizing interparticle. Biosens Bioelectron 25:984–989

    Article  Google Scholar 

  93. Slocik JM, Zabinski JS, Phillips DM et al (2008) Colorimetric response of peptide-functionalized gold nanoparticles to metal ions. Small 4:548–551

    Article  Google Scholar 

  94. Liu JW, Lu Y (2003) A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J Am Chem Soc 125:6642–6643

    Article  Google Scholar 

  95. Wang B, Zhu Q, Liaoa D (2011) Perylene probe induced gold nanoparticles aggregation. J Mater Chem 21:4821–4826

    Article  Google Scholar 

  96. Slocik JM, Zabinski JS Jr, Phillips DM et al (2008) Colorimetric response of peptide-functionalized gold nanoparticles to metal ions. Small 4:548–551

    Article  Google Scholar 

  97. Song Y, Qu K, Zhao C et al (2010) Molten salt synthesis and high rate performance of the “Desert-Rose” form of LiCoO2. Adv Mater 22:2206–2210

    Article  Google Scholar 

  98. Song Y, Wang X, Zhao C et al (2010) Label-free colorimetric detection of single nucleotide polymorphism by using single-walled carbon nanotube intrinsic peroxidase-like activity. Chem Eur J 16:3617–3621

    Article  Google Scholar 

  99. Shi W, Wang Q, Long Y et al (2011) Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem Commun 47:6695–6697

    Article  Google Scholar 

  100. Guo Y, Deng L, Li J et al (2011) Hemin − graphene hybrid nanosheets with intrinsic peroxidase-like activity for label-free colorimetric detection of single-nucleotide polymorphism. ACS Nano 5:1282–1290

    Article  Google Scholar 

  101. Giraldi TR, Arruda CC, Costa GMD et al (2009) Heterogeneous Fenton reactants: a study of the behavior of iron oxide nanoparticles obtained by the polymeric precursor method. J Sol-Gel Sci Technol 52:299–303

    Article  Google Scholar 

  102. Gromboni CF, Kamogawa MY, Ferreira AG et al (2007) Microwave-assisted photo-Fenton decomposition of chlorfenvinphos and cypermethrin in residual water. J Photochem Photobiol 185:32–37

    Article  Google Scholar 

  103. Gao L, Zhuang J, Nie L et al (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583

    Article  Google Scholar 

  104. Hermanek M, Hermankova P, Pechousek J (2010) Quasi-isothermal decomposition: a way to nanocrystalline mesoporous-like Fe2O3 catalyst for rapid heterogeneous decomposition of hydrogen peroxide. J Mater Chem 20:3709–3715

    Article  Google Scholar 

  105. Huang HH, Lu MC, Chen JN (2001) Catalytic Decomposition of Hydrogen Peroxide and 2-chlorophenol with iron oxides. Water Res 35:2291–2299

    Article  Google Scholar 

  106. Park JN, Shon JK, Jin M et al (2010) Highly ordered mesoporous α-Mn2O3 for catalytic decomposition of H2O2 at low temperatures. Chem Lett 39:493–495

    Article  Google Scholar 

  107. Liao MY, Huang CC, Chang MC et al (2011) Synthesis of magnetic hollow nanotubes based on the Kirkendall effect for MR contrast agent and colorimetric hydrogen peroxide sensor. J Mater Chem 21:7974–7981

    Article  Google Scholar 

  108. Wang RE, Niu Y, Wu H, Hu Y, Cai J (2012) Development of NGR-based anti-cancer agents for targeted therapeutics and imaging. Anticancer Agents Med Chem 2:76–86

    Article  Google Scholar 

  109. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Controlled Release 65:271–284

    Article  Google Scholar 

  110. Bolhassani A, Safaiyarn S, Rafati S (2011) Improvement of different vaccine delivery systems for cancer therapy. Mol Cancer 10:3

    Article  Google Scholar 

  111. Fan Z et al (2012) Multifunctional plasmonic shell–magnetic core nanoparticles for targeted diagnostics, isolation, and photothermal destruction of tumor cells. ACS Nano 6(2):1065–1073

    Article  Google Scholar 

  112. Hirsch LR et al (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 100(23):13549–13554

    Article  Google Scholar 

  113. Zhao Q, Wang L, Cheng R, Mao L, Arnold RD, Howerth EW, Chen ZG, Platt S (2012) Magnetic nanoparticle-based hyperthermia for head & neck cancer in mouse models. Theranostics 2(1):113–121

    Article  Google Scholar 

  114. Babilas P, Schreml S, Landthaler M, Szeimies RM (2010) Photodynamic therapy in dermatology: state-of-the-art. Photodermatol Photoimmunol Photomed 26(3):118–132

    Article  Google Scholar 

  115. Haase M, Schäfer H (2011) Upconverting nanoparticles. Angew Chem Int Ed 50(26):5808–5829

    Article  Google Scholar 

  116. Wang LV, Wu HI (2007) Biomedical optics. Wiley

    Google Scholar 

  117. Liu K et al (2012) Covalently assembled NIR nanoplatform for simultaneous fluorescence imaging and photodynamic therapy of cancer cells. ACS Nano 6(5):4054–4062

    Article  Google Scholar 

  118. Idris NM et al (2012) In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat Med 18(10):1580–1585

    Article  Google Scholar 

  119. Cui S et al (2012) In vivo targeted deep-tissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstruct. ACS Nano 7(1):676–688

    Article  Google Scholar 

  120. Duclos SJ (1998) Scintillator phosphors for medical imagining. Electrochem Soc Interface Summer 34–38

    Google Scholar 

  121. Scaffidi JP et al (2011) Activity of psoralen-functionalized nanoscintillators against cancer cells upon X-ray excitation. ACS Nano 5(6):4679–4687

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the National Science Council (grant no. NSC 101-2627-E-010-001 and NSC 101-2113-M-010-002-MY2) and the Ministry of Education of Taiwan for financial support of the integrated research in the nanotechnology and biomedical science and engineering areas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Allen Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Liu, TY., Lo, CL., Huang, CC., Lin, SL., Chang, C.A. (2014). Engineering Nanomaterials for Biosensors and Therapeutics. In: Cai, W. (eds) Engineering in Translational Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-4372-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4372-7_19

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4371-0

  • Online ISBN: 978-1-4471-4372-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics