Engineering DNA Vaccines for Cancer Therapy

  • Brian M. Olson
  • Douglas G. McNeel


An anti-tumor DNA vaccine is a bacterial DNA plasmid that encodes the cDNA of a tumor antigen, which when injected into recipients can elicit humoral and/or cellular immunity against tumor cells expressing the encoded antigen. Dozens of DNA vaccines have entered clinical trials for a variety of malignancies, where they have demonstrated efficacy in eliciting immune responses and potential clinical responses. This is further demonstrated by the approval of a DNA vaccine for the treatment of canine melanoma, the first vaccine approved for the treatment of cancer. One of the primary advantages of DNA vaccines as opposed to some other methods of antigen delivery is that they can be easily constructed, purified, and delivered to recipients. Additionally, these vaccines can be easily modified to incorporate various elements that can enhance anti-tumor immune responses. In this review, we discuss engineering efforts to enhance the immune and anti-tumor efficacy of DNA vaccines, focusing on specific changes that can be made to the DNA backbone to enhance the expression, processing, and presentation of the encoded antigen, as well as improving the inherent immunogenicity of the vaccine itself.


West Nile Virus Bacterial Vaccine Pest Sequence Host APCs Canine Melanoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Antigen-presenting cell


Cytomegalovirus immediate–early


Cytotoxic T lymphocyte


Dendritic cell


Endoplasmic reticulum


Granulocyte-macrophage colony-stimulating factor


Human immunodeficiency virus


Hormone-refractory prostate cancer


Human papillomavirus


Heat-shock protein




Major histocompatibility antigen


Natural killer


Prostatic acid phosphatase




Prostate-specific antigen


Prostate-specific membrane antigen


T helper cell


  1. 1.
    Siegel R, Naishadham D, Jemal A (2013) Cancer statistics. CA Cancer J Clin 63(1):11–30Google Scholar
  2. 2.
    Kantoff PW et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J of Med 363(5):411–422Google Scholar
  3. 3.
    Hodi FS et al. (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med, 363(8):711–723Google Scholar
  4. 4.
    USDA licenses DNA vaccine for treatment of melanoma in dogs (2010). J Am Vet Med Assoc, 236(5):495Google Scholar
  5. 5.
    Bergman PJ, Camps-Palau MA, McKnight JA, Leibman NF, Craft DM, Leung C, Liao J, Riviere I, Sadelain M, Hohenhaus AE, Gregor P, Houghton AN, Perales MA, Wolchok JD (2006) Development of a xenogeneic DNA vaccine program for canine malignant melanoma at the animal med center. Vaccine 24(21):4582–4585Google Scholar
  6. 6.
    Bergman PJ, McKnight J, Novosad A, Charney S, Farrelly J, Craft D, Wulderk M, Jeffers Y, Sadelain M, Hohenhaus AE, Segal N, Gregor P, Engelhorn M, Riviere I, Houghton AN, Wolchok JD (2003) Long-term survival of dogs with advanced malignant melanoma after DNA vaccination with xenogeneic human tyrosinase: a phase I trial. Clin Cancer Res 9(4):1284–1290Google Scholar
  7. 7.
    Ehrlich P (1909) Über den jetzigen stand der karzinomforschung. Ned Tijdschr Geneeskd 5(1):273–290Google Scholar
  8. 8.
    Thomas L (1959) Discussion of cellular and humoral aspects of the hypersensitive states. In: Lawrence HS (ed) Cellular and humoral aspects of the hypersensitive states. Hoeber-Harper, New York, pp 529–532Google Scholar
  9. 9.
    Burnet FM (1967) Immunological aspects of malignant disease. Lancet 1:1171Google Scholar
  10. 10.
    Challis GB, Stam HJ (1990) The spontaneous regression of cancer. A review of cases from 1900 to 1987. Acta oncologica (Stockholm, Sweden) 29(5):545–550Google Scholar
  11. 11.
    Pages F, Galon J, Dieu-Nosjean MC, Tartour E, Sautes-Fridman C, Fridman WH (2009) Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene 29 (8):1093–1102 Google Scholar
  12. 12.
    Vesalainen S, Lipponen P, Talja M, Syrjanen K (1994) Histological grade, perineural infiltration, tumour-infiltrating lymphocytes and apoptosis as determinants of long-term prognosis in prostatic adenocarcinoma. Eur J Cancer 30A(12):1797–1803Google Scholar
  13. 13.
    Mihm MC Jr, Clemente CG, Cascinelli N (1996) Tumor infiltrating lymphocytes in lymph node melanoma metastases: a histopathologic prognostic indicator and an expression of local immune response. Lab Invest 74(1):43–47Google Scholar
  14. 14.
    Gooden MJ, de Bock GH, Leffers N, Daemen T, Nijman HW (2011) The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. Br J Cancer 105(1):93–103Google Scholar
  15. 15.
    Jochems C, Schlom J (2011) Tumor-infiltrating immune cells and prognosis: the potential link between conventional cancer therapy and immunity. Exp Biol Med (Maywood, NJ) 236 (5):567–579Google Scholar
  16. 16.
    Naito Y, Saito K, Shiiba K, Ohuchi A, Saigenji K, Nagura H, Ohtani H (1998) CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res 58(16):3491–3494Google Scholar
  17. 17.
    Berkow R, Beers M (1997) Cancer and the immune system. In: The merck manual of medical information. Merck Research Laboratories, Whitehouse Station, NJ, pp 792–794Google Scholar
  18. 18.
    Penn I (1970) Malignant tumors in organ transplant recipients, recent results in cancer research series. Springer-Verlag, LLC, New YorkGoogle Scholar
  19. 19.
    Gatti RA, Good RA (1971) Occurrence of malignancy in immunodeficiency diseases, a literature review. Cancer 28(1):89–98Google Scholar
  20. 20.
    Boshoff C, Weiss R (2002) AIDS-related malignancies. Nat Rev Cancer 2(5):373–382Google Scholar
  21. 21.
    Sheil AG (1986) Cancer after transplantation. World J Surg 10(3):389–396Google Scholar
  22. 22.
    Derhovanessian E, Solana R, Larbi A, Pawelec G (2008) Immunity, ageing and cancer. Immun Ageing 5:11Google Scholar
  23. 23.
    Borek D, Butcher D, Hassanein K, Holmes F (1990) Relationship of age to histologic grade in prostate cancer. Prostate 16(4):305–311Google Scholar
  24. 24.
    Leibovitz A, Baumoehl Y, Segal R (2004) Increased incidence of pathological and clinical prostate cancer with age: age related alterations of local immune surveillance. J Urol 172(2):435–437Google Scholar
  25. 25.
    Olson BM, McNeel DG (2007) Antibody and T-cell responses specific for the androgen receptor in patients with prostate cancer. Prostate 67(16):1729–1739Google Scholar
  26. 26.
    Zarour H, DeLeo A, Finn O, Storkus W (2003) Cancer Med 6: tumor antigens. Cancer MedGoogle Scholar
  27. 27.
    Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT, Mellman I, Prindiville SA, Viner JL, Weiner LM, Matrisian LM (2009) The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 15(17):5323–5337Google Scholar
  28. 28.
    Disis M, Calenoff E, McLaughlin G, Murphy A, Chen W, Groner B, Jeschke M, Lydon N, McGlynn E, Livingston R (1994) Existent T-cell and antibody immunity to HER-2/neu protein in patients with breast cancer. Cancer Res 54(1):16–20Google Scholar
  29. 29.
    Hirohashi Y, Torigoe T, Inoda S, Kobayasi J, Nakatsugawa M, Mori T, Hara I, Sato N (2009) The functioning antigens: beyond just as the immunological targets. Cancer Sci 100(5):798–806Google Scholar
  30. 30.
    Olson BM, McNeel DG (2011) CD8+ T cells specific for the androgen receptor are common in patients with prostate cancer and are able to lyse prostate tumor cells. Cancer Immunol Immunother 60:781–792Google Scholar
  31. 31.
    Olson BM, Frye TP, Johnson LE, Fong L, Knutson KL, Disis ML, McNeel DG (2010) HLA-A2-restricted T-cell epitopes specific for prostatic acid phosphatase. Cancer Immunol Immunother 59(6):943–953Google Scholar
  32. 32.
    Rentzsch C, Kayser S, Stumm S, Watermann I, Walter S, Stevanovic S, Wallwiener D, Guckel B (2003) Evaluation of pre-existent immunity in patients with primary breast cancer: molecular and cellular assays to quantify antigen-specific T lymphocytes in peripheral blood mononuclear cells. Clin Cancer Res 9(12):4376–4386Google Scholar
  33. 33.
    Godin-Ethier J, Hanafi LA, Piccirillo CA, Lapointe R (2011) Indoleamine 2, 3-dioxygenase expression in human cancers: clinical and immunologic perspectives. Clin Cancer Res 17(22):6985–6991Google Scholar
  34. 34.
    Schreiber H, Wu TH, Nachman J, Kast WM (2002) Immunodominance and tumor escape. Semin in Cancer Biol 12(1):25–31Google Scholar
  35. 35.
    Khong HT, Restifo NP (2002) Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nat Immunol 3(11):999–1005Google Scholar
  36. 36.
    Gajewski TF (2006) Identifying and overcoming immune resistance mechanisms in the melanoma tumor microenvironment. Clin Cancer Res 12(7 Pt 2):2326s–2330sGoogle Scholar
  37. 37.
    Willimsky G, Blankenstein T (2005) Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance. Nat 437(7055):141–146Google Scholar
  38. 38.
    DuPage M, Mazumdar C, Schmidt LM, Cheung AF, Jacks T (2012) Expression of tumour-specific antigens underlies cancer immunoediting. Nat 482(7385):405–409Google Scholar
  39. 39.
    Ahmad M, Rees RC, Ali SA (2004) Escape from immunotherapy: possible mechanisms that influence tumor regression/progression. Cancer Immunol Immunother 53(10):844–854Google Scholar
  40. 40.
    Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L, Herber DL, Schneck J, Gabrilovich DI (2007) Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 13(7):828–835. doi: 10.1038/nm1609 Google Scholar
  41. 41.
    Topalian SL, Drake CG, Pardoll DM (2012) Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol 24(2):207–212Google Scholar
  42. 42.
    Higano CS, Corman JM, Smith DC, Centeno AS, Steidle CP, Gittleman M, Simons JW, Sacks N, Aimi J, Small EJ (2008) Phase 1/2 dose-escalation study of a GM-CSF-secreting, allogeneic, cellular immunotherapy for metastatic hormone-refractory prostate cancer. Cancer 113(5):975–984Google Scholar
  43. 43.
    Emens LA (2009) GM-CSF-secreting vaccines for solid tumors. Curr Opin Investig Drugs 10(12):1315–1324Google Scholar
  44. 44.
    Kouiavskaia DV, Berard CA, Datena E, Hussain A, Dawson N, Klyushnenkova EN, Alexander RB (2009) Vaccination with agonist peptide PSA: 154–163 (155L) derived from prostate specific antigen induced CD8 T-cell response to the native peptide PSA: 154–163 but failed to induce the reactivity against tumor targets expressing PSA: a phase 2 study in patients with recurrent prostate cancer. J Immunother 32(6):655–666Google Scholar
  45. 45.
    Disis ML, Wallace DR, Gooley TA, Dang Y, Slota M, Lu H, Coveler AL, Childs JS, Higgins DM, Fintak PA, dela Rosa C, Tietje K, Link J, Waisman J, Salazar LG (2009) Concurrent trastuzumab and HER2/neu-specific vaccination in patients with metastatic breast cancer. J Clin Oncol 27 (28):4685–4692Google Scholar
  46. 46.
    Perez SA, von Hofe E, Kallinteris NL, Gritzapis AD, Peoples GE, Papamichail M, Baxevanis CN (2010) A new era in anticancer peptide vaccines. Cancer 116 (9):2071–2080Google Scholar
  47. 47.
    Noguchi M, Kakuma T, Uemura H, Nasu Y, Kumon H, Hirao Y, Moriya F, Suekane S, Matsuoka K, Komatsu N, Shichijo S, Yamada A, Itoh K (2010) A randomized phase II trial of personalized peptide vaccine plus low dose estramustine phosphate (EMP) versus standard dose EMP in patients with castration resistant prostate cancer. Cancer Immunol Immunother 59(7):1001–1009Google Scholar
  48. 48.
    Bolonaki I et al (2007) Vaccination of patients with advanced non-small-cell lung cancer with an optimized cryptic human telomerase reverse transcriptase peptide. J Clin Oncol 25(19):2727–2734Google Scholar
  49. 49.
    Perez SA, von Hofe E, Kallinteris NL, Gritzapis AD, Peoples GE, Papamichail M, Baxevanis CN (2010) A new era in anticancer peptide vaccines. Cancer 116 (9):2071-2080Google Scholar
  50. 50.
    Koths K (1995) Recombinant proteins for medical use: the attractions and challenges. Curr Opin in Biotechnol 6(6):681–687Google Scholar
  51. 51.
    Fujii S, Takayama T, Asakura M, Aki K, Fujimoto K, Shimizu K (2009) Dendritic cell-based cancer immunotherapies. Archivum Immunologiae et Therapiae Experimentalis 57(3):189–198Google Scholar
  52. 52.
    Ilett EJ, Prestwich RJ, Melcher AA (2010) The evolving role of dendritic cells in cancer therapy. Expert Opin Biol Ther 10 (3):369–379Google Scholar
  53. 53.
    Su Z, Dannull J, Yang BK, Dahm P, Coleman D, Yancey D, Sichi S, Niedzwiecki D, Boczkowski D, Gilboa E, Vieweg J (2005) Telomerase mRNA-transfected dendritic cells stimulate antigen-specific CD8+ and CD4+ T cell responses in patients with metastatic prostate cancer. J Immunol 174(6):3798–3807Google Scholar
  54. 54.
    Rice J, Ottensmeier CH, Stevenson FK (2008) DNA vaccines: precision tools for activating effective immunity against cancer. Nat Rev Cancer 8(2):108–120Google Scholar
  55. 55.
    Anderson RJ, Schneider J (2007) Plasmid DNA and viral vector-based vaccines for the treatment of cancer. Vaccine 25(Suppl 2):B24–B34Google Scholar
  56. 56.
    Collins SA, Guinn BA, Harrison PT, Scallan MF, O’Sullivan GC, Tangney M (2008) Viral vectors in cancer immunotherapy: which vector for which strategy? Curr Gene Ther 8(2):66–78Google Scholar
  57. 57.
    Woo CY, Osada T, Clay TM, Lyerly HK, Morse MA (2006) Recent clinical progress in virus-based therapies for cancer. Expert Opin Biol Ther 6(11):1123–1134Google Scholar
  58. 58.
    Kantoff PW, Schuetz TJ, Blumenstein BA, Glode LM, Bilhartz DL, Wyand M, Manson K, Panicali DL, Laus R, Schlom J, Dahut WL, Arlen PM, Gulley JL, Godfrey WR (2010) Overall survival analysis of a phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J Clin Oncol 28(7):1099–1105Google Scholar
  59. 59.
    Brockstedt DG, Dubensky TW (2008) Promises and challenges for the development of Listeria monocytogenes-based immunotherapies. Expert Rev Vaccines 7(7):1069–1084Google Scholar
  60. 60.
    Le DT et al (2012) A live-attenuated Listeria vaccine (ANZ-100) and a live-attenuated Listeria vaccine expressing mesothelin (CRS-207) for advanced cancers: phase I studies of safety and immune induction. Clin Cancer Res 18(3):858–868Google Scholar
  61. 61.
    Liu MA (2011) DNA vaccines: an historical perspective and view to the future. Immunol Rev 239(1):62–84Google Scholar
  62. 62.
    Kutzler MA, Weiner DB (2008) DNA vaccines: ready for prime time? Nat Rev Genet 9(10):776–788Google Scholar
  63. 63.
    Nabel GJ, Kaslow DC, Ulmer JB, Liu MA (2009) DNA vaccines. In: Levine M (ed) N Generation Vaccines, 4th ednGoogle Scholar
  64. 64.
    Liu MA, Ulmer JB (2005) Hum clinical trials of plasmid DNA vaccines. Adv Genet 55:25–40Google Scholar
  65. 65.
    Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL (1990) Direct gene transfer into mouse muscle in vivo. Sci 247(4949 Pt 1):1465–1468Google Scholar
  66. 66.
    Ulmer JB, Donnelly JJ, Parker SE, Rhodes GH, Felgner PL, Dwarki VJ, Gromkowski SH, Deck RR, DeWitt CM, Friedman A et al (1993) Heterologous protection against influenza by injection of DNA encoding a viral protein. Sci 259(5102):1745–1749Google Scholar
  67. 67.
    Krieg AM, Yi AK, Schorr J, Davis HL (1998) The role of CpG dinucleotides in DNA vaccines. Trends Microbiol 6(1):23–27Google Scholar
  68. 68.
    Klinman DM, Yamshchikov G, Ishigatsubo Y (1997) Contribution of CpG motifs to the immunogenicity of DNA vaccines. J Immunol 158(8):3635–3639Google Scholar
  69. 69.
    Garcia F, Leon A, Gatell JM, Plana M, Gallart T (2012) Therapeutic vaccines against HIV infection. Hum Vaccines and Immunotherapeutics 8(5):569–581Google Scholar
  70. 70.
    Choo AY, Broderick KE, Kim JJ, Sardesai NY (2010) DNA-based influenza vaccines: evaluating their potential to provide universal protection. IDrugs 13(10):707–712Google Scholar
  71. 71.
    Griffin DE, Pan CH (2009) Measles: old vaccines, new vaccines. Curr topics in microbiology and immunol 330:191–212Google Scholar
  72. 72.
    Grant-Klein RJ, Altamura LA, Schmaljohn CS (2011) Progress in recombinant DNA-derived vaccines for Lassa virus and filoviruses. Virus Res 162(1–2):148–161Google Scholar
  73. 73.
    Fissolo N, Montalban X, Comabella M (2012) DNA-based vaccines for multiple sclerosis: current status and future directions. Clin Immunol 142(1):76–83Google Scholar
  74. 74.
    Chua KY, Kuo IC, Huang CH (2009) DNA vaccines for the prevention and treatment of allergy. Curr Opin in Allergy and Clinical Immunol 9(1):50–54Google Scholar
  75. 75.
    Shimamura M, Sato N, Morishita R (2011) Experimental and clinical application of plasmid DNA in the field of central nervous diseases. Curr Gene Ther 11(6):491–500Google Scholar
  76. 76.
    Tabira T (2010) Immunization therapy for Alzheimer disease: a comprehensive review of active immunization strategies. The Tohoku J Exp Med 220(2):95–106Google Scholar
  77. 77.
    Davidson AH, Traub-Dargatz JL, Rodeheaver RM, Ostlund EN, Pedersen DD, Moorhead RG, Stricklin JB, Dewell RD, Roach SD, Long RE, Albers SJ, Callan RJ, Salman MD (2005) Immunologic responses to West Nile virus in vaccinated and clinically affected horses. J Am Vet Med Assoc, 226 (2):240–245Google Scholar
  78. 78.
    Garver KA, LaPatra SE, Kurath G (2005) Efficacy of an infectious hematopoietic necrosis (IHN) virus DNA vaccine in Chinook Oncorhynchus tshawytscha and sockeye O. nerka salmon. Diseases of aquatic Org 64 (1):13–22Google Scholar
  79. 79.
    Yuan J, Ku GY, Gallardo HF, Orlandi F, Manukian G, Rasalan TS, Xu Y, Li H, Vyas S, Mu Z, Chapman PB, Krown SE, Panageas K, Terzulli SL, Old LJ, Houghton AN, Wolchok JD (2009) Safety and immunogenicity of a human and mouse gp100 DNA vaccine in a phase I trial of patients with melanoma. Cancer Immun 9:5Google Scholar
  80. 80.
    Ginsberg BA, Gallardo HF, Rasalan TS, Adamow M, Mu Z, Tandon S, Bewkes BB, Roman RA, Chapman PB, Schwartz GK, Carvajal RD, Panageas KS, Terzulli SL, Houghton AN, Yuan JD, Wolchok JD (2010) Immunologic response to xenogeneic gp100 DNA in melanoma patients: comparison of particle-mediated epidermal delivery with intramuscular injection. Clin Cancer Res 16(15):4057–4065Google Scholar
  81. 81.
    Wolchok JD, Yuan J, Houghton AN, Gallardo HF, Rasalan TS, Wang J, Zhang Y, Ranganathan R, Chapman PB, Krown SE, Livingston PO, Heywood M, Riviere I, Panageas KS, Terzulli SL, Perales MA (2007) Safety and immunogenicity of tyrosinase DNA vaccines in patients with melanoma. Mol Ther 15(11):2044–2050Google Scholar
  82. 82.
    Weber J, Boswell W, Smith J, Hersh E, Snively J, Diaz M, Miles S, Liu X, Obrocea M, Qiu Z, Bot A (2008) Phase 1 trial of intranodal injection of a Melan-A/MART-1 DNA plasmid vaccine in patients with stage IV melanoma. J Immunother 31(2):215–223Google Scholar
  83. 83.
    Dangoor A, Lorigan P, Keilholz U, Schadendorf D, Harris A, Ottensmeier C, Smyth J, Hoffmann K, Anderson R, Cripps M, Schneider J, Hawkins R (2010) Clinical and immunological responses in metastatic melanoma patients vaccinated with a high-dose poly-epitope vaccine. Cancer Immunol Immunother 59(6):863–873. doi: 10.1007/s00262-009-0811-7 Google Scholar
  84. 84.
    Smith CL, Dunbar PR, Mirza F, Palmowski MJ, Shepherd D, Gilbert SC, Coulie P, Schneider J, Hoffman E, Hawkins R, Harris AL, Cerundolo V (2005) Recombinant modified vaccinia Ankara primes functionally activated CTL specific for a melanoma tumor antigen epitope in melanoma patients with a high risk of disease recurrence. Int J Cancer 113(2):259–266Google Scholar
  85. 85.
    McNeel DG, Dunphy EJ, Davies JG, Frye TP, Johnson LE, Staab MJ, Horvath DL, Straus J, Alberti D, Marnocha R, Liu G, Eickhoff JC, Wilding G (2009) Safety and immunological efficacy of a DNA vaccine encoding prostatic acid phosphatase in patients with stage D0 prostate cancer. J Clin Oncol 27(25):4047–4054Google Scholar
  86. 86.
    Becker JT, Olson BM, Johnson LE, Davies JG, Dunphy EJ, McNeel DG (2010) DNA vaccine encoding prostatic acid phosphatase (PAP) elicits long-term T-cell responses in patients with recurrent prostate cancer. J Immunother 33(6):639–647Google Scholar
  87. 87.
    Pavlenko M, Roos AK, Lundqvist A, Palmborg A, Miller AM, Ozenci V, Bergman B, Egevad L, Hellstrom M, Kiessling R, Masucci G, Wersall P, Nilsson S, Pisa P (2004) A phase I trial of DNA vaccination with a plasmid expressing prostate-specific antigen in patients with hormone-refractory prostate cancer. Br J Cancer 91(4):688–694Google Scholar
  88. 88.
    Miller AM, Ozenci V, Kiessling R, Pisa P (2005) Immune monitoring in a phase 1 trial of a PSA DNA vaccine in patients with hormone-refractory prostate cancer. J Immunother 28(4):389–395Google Scholar
  89. 89.
    Todorova K, Ignatova I, Tchakarov S, Altankova I, Zoubak S, Kyurkchiev S, Mincheff M (2005) Humoral immune response in prostate cancer patients after immunization with gene-based vaccines that encode for a protein that is proteasomally degraded. Cancer Immun 5:1Google Scholar
  90. 90.
    Low L, Mander A, McCann K, Dearnaley D, Tjelle T, Mathiesen I, Stevenson F, Ottensmeier CH (2009) DNA vaccination with electroporation induces increased antibody responses in patients with prostate cancer. Hum Gene Ther 20(11):1269–1278Google Scholar
  91. 91.
    Chudley L, McCann K, Mander A, Tjelle T, Campos-Perez J, Godeseth R, Creak A, Dobbyn J, Johnson B, Bass P, Heath C, Kerr P, Mathiesen I, Dearnaley D, Stevenson F, Ottensmeier C (2012) DNA fusion-gene vaccination in patients with prostate cancer induces high-frequency CD8(+) T-cell responses and increases PSA doubling time. Cancer Immunol Immunother 61(11):2161–2170. doi: 10.1007/s00262-012-1270-0 Google Scholar
  92. 92.
    Boshart M, Weber F, Jahn G, Dorsch-Hasler K, Fleckenstein B, Schaffner W (1985) A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell 41(2):521–530Google Scholar
  93. 93.
    Garmory HS, Brown KA, Titball RW (2003) DNA vaccines: improving expression of antigens. Genet Vaccines Ther 1(1):2Google Scholar
  94. 94.
    Weeratna RD, Wu T, Efler SM, Zhang L, Davis HL (2001) Designing gene therapy vectors: avoiding immune responses by using tissue-specific promoters. Gene Ther 8(24):1872–1878Google Scholar
  95. 95.
    Chapman BS, Thayer RM, Vincent KA, Haigwood NL (1991) Effect of intron A from human cytomegalovirus (Towne) immediate-early gene on heterologous expression in mammalian cells. Nucleic Acids Res 19(14):3979–3986Google Scholar
  96. 96.
    Huang MT, Gorman CM (1990) Intervening sequences increase efficiency of RNA 3’ processing and accumulation of cytoplasmic RNA. Nucleic Acids Res 18(4):937–947Google Scholar
  97. 97.
    Le Hir H, Nott A, Moore MJ (2003) How introns influence and enhance eukaryotic gene expression. Trends Biochem Sci 28(4):215–220Google Scholar
  98. 98.
    Barouch DH, Yang ZY, Kong WP, Korioth-Schmitz B, Sumida SM, Truitt DM, Kishko MG, Arthur JC, Miura A, Mascola JR, Letvin NL, Nabel GJ (2005) A human T-cell leukemia virus type 1 regulatory element enhances the immunogenicity of human immunodeficiency virus type 1 DNA vaccines in mice and nonhuman primates. J Virol 79(14):8828–8834Google Scholar
  99. 99.
    Bodles-Brakhop AM, Draghia-Akli R (2008) DNA vaccination and gene therapy: optimization and delivery for cancer therapy. Expert Rev Vaccines 7(7):1085–1101Google Scholar
  100. 100.
    Hirao LA, Wu L, Khan AS, Hokey DA, Yan J, Dai A, Betts MR, Draghia-Akli R, Weiner DB (2008) Combined effects of IL-12 and electroporation enhances the potency of DNA vaccination in macaques. Vaccine 26(25):3112–3120Google Scholar
  101. 101.
    Tejeda-Mansir A, Montesinos RM (2008) Upstream processing of plasmid DNA for vaccine and gene therapy applications. Recent Patents on Biotechnol 2(3):156–172Google Scholar
  102. 102.
    Kozak M (1987) At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J Mol Biol 196(4):947–950Google Scholar
  103. 103.
    Olson BM, Johnson LE, McNeel DG (2012) The androgen receptor: a biologically relevant vaccine target for the treatment of prostate cancer. Cancer Immunol ImmunotherGoogle Scholar
  104. 104.
    Uchijima M, Yoshida A, Nagata T, Koide Y (1998) Optimization of codon usage of plasmid DNA vaccine is required for the effective MHC class I-restricted T cell responses against an intracellular bacterium. J Immunol 161(10):5594–5599Google Scholar
  105. 105.
    Nagata T, Uchijima M, Yoshida A, Kawashima M, Koide Y (1999) Codon optimization effect on translational efficiency of DNA vaccine in mammalian cells: analysis of plasmid DNA encoding a CTL epitope derived from microorganisms. Biochem and Biophys Res comm 261(2):445–451Google Scholar
  106. 106.
    Cid-Arregui A, Juarez V, zur Hausen H (2003) A synthetic E7 gene of human papillomavirus type 16 that yields enhanced expression of the protein in mammalian cells and is useful for DNA immunization studies. J Virol, 77 (8):4928–4937Google Scholar
  107. 107.
    Cheung YK, Cheng SC, Sin FW, Xie Y (2004) Plasmid encoding papillomavirus Type 16 (HPV16) DNA constructed with codon optimization improved the immunogenicity against HPV infection. Vaccine 23(5):629–638Google Scholar
  108. 108.
    Kim MS, Sin JI (2005) Both antigen optimization and lysosomal targeting are required for enhanced anti-tumour protective immunity in a human papillomavirus E7-expressing animal tumour model. Immunol 116(2):255–266Google Scholar
  109. 109.
    Leifert JA, Rodriguez-Carreno MP, Rodriguez F, Whitton JL (2004) Targeting plasmid-encoded proteins to the antigen presentation pathways. Immunol Rev 199:40–53Google Scholar
  110. 110.
    Rodriguez F, An LL, Harkins S, Zhang J, Yokoyama M, Widera G, Fuller JT, Kincaid C, Campbell IL, Whitton JL (1998) DNA immunization with minigenes: low frequency of memory cytotoxic T lymphocytes and inefficient antiviral protection are rectified by ubiquitination. J Virol 72(6):5174–5181Google Scholar
  111. 111.
    Rodriguez F, Zhang J, Whitton JL (1997) DNA immunization: ubiquitination of a viral protein enhances cytotoxic T-lymphocyte induction and antiviral protection but abrogates antibody induction. J Virol 71(11):8497–8503Google Scholar
  112. 112.
    Barry MA, Lai WC, Johnston SA (1995) Protection against mycoplasma infection using expression-library immunization. Nat 377(6550):632–635Google Scholar
  113. 113.
    Delogu G, Howard A, Collins FM, Morris SL (2000) DNA vaccination against tuberculosis: expression of a ubiquitin-conjugated tuberculosis protein enhances antimycobacterial immunity. Infection and Imm 68(6):3097–3102Google Scholar
  114. 114.
    Xiang R, Lode HN, Chao TH, Ruehlmann JM, Dolman CS, Rodriguez F, Whitton JL, Overwijk WW, Restifo NP, Reisfeld RA (2000) An autologous oral DNA vaccine protects against murine melanoma. Proc Natl Acad Sci USA 97(10):5492–5497Google Scholar
  115. 115.
    Leachman SA, Shylankevich M, Slade MD, Levine D, Sundaram RK, Xiao W, Bryan M, Zelterman D, Tiegelaar RE, Brandsma JL (2002) Ubiquitin-fused and/or multiple early genes from cottontail rabbit papillomavirus as DNA vaccines. J Virol 76(15):7616–7624Google Scholar
  116. 116.
    Rogers S, Wells R, Rechsteiner M (1986) Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Sci 234(4774):364–368Google Scholar
  117. 117.
    Sewell DA, Shahabi V, Gunn GR 3rd, Pan ZK, Dominiecki ME, Paterson Y (2004) Recombinant Listeria vaccines containing PEST sequences are potent immune adjuvants for the tumor-associated antigen human papillomavirus-16 E7. Cancer Res 64(24):8821–8825Google Scholar
  118. 118.
    Starodubova ES, Boberg A, Litvina M, Morozov A, Petrakova NV, Timofeev A, Latyshev O, Tunitskaya V, Wahren B, Isaguliants MG, Karpov VL (2008) HIV-1 reverse transcriptase artificially targeted for proteasomal degradation induces a mixed Th1/Th2-type immune response. Vaccine 26(40):5170–5176Google Scholar
  119. 119.
    Varshavsky A (1996) The N-end rule: functions, mysteries, uses. Proc Natl Acad Sci USA 93(22):12142–12149Google Scholar
  120. 120.
    Tobery T, Siliciano RF (1999) Cutting edge: induction of enhanced CTL-dependent protective immunity in vivo by N-end rule targeting of a model tumor antigen. J Immunol 162(2):639–642Google Scholar
  121. 121.
    Wu Y, Kipps TJ (1997) Deoxyribonucleic acid vaccines encoding antigens with rapid proteasome-dependent degradation are highly efficient inducers of cytolytic T lymphocytes. J Immunol 159(12):6037–6043Google Scholar
  122. 122.
    Anton LC, Schubert U, Bacik I, Princiotta MF, Wearsch PA, Gibbs J, Day PM, Realini C, Rechsteiner MC, Bennink JR, Yewdell JW (1999) Intracellular localization of proteasomal degradation of a viral antigen. J Cell Biol 146(1):113–124Google Scholar
  123. 123.
    Anderson K, Cresswell P, Gammon M, Hermes J, Williamson A, Zweerink H (1991) Endogenously synthesized peptide with an endoplasmic reticulum signal sequence sensitizes antigen processing mutant cells to class I-restricted cell-mediated lysis. J Exp Med 174(2):489–492Google Scholar
  124. 124.
    Bacik I, Cox JH, Anderson R, Yewdell JW, Bennink JR (1994) TAP (transporter associated with antigen processing)-independent presentation of endogenously synthesized peptides is enhanced by endoplasmic reticulum insertion sequences located at the amino- but not carboxyl-terminus of the peptide. J Immunol 152(2):381–387Google Scholar
  125. 125.
    Ciernik IF, Berzofsky JA, Carbone DP (1996) Induction of cytotoxic T lymphocytes and antitumor immunity with DNA vaccines expressing single T cell epitopes. J Immunol 156(7):2369–2375Google Scholar
  126. 126.
    Rice J, King CA, Spellerberg MB, Fairweather N, Stevenson FK (1999) Manipulation of pathogen-derived genes to influence antigen presentation via DNA vaccines. Vaccine 17(23–24):3030–3038Google Scholar
  127. 127.
    Wallin RP, Lundqvist A, More SH, von Bonin A, Kiessling R, Ljunggren HG (2002) Heat-shock proteins as activators of the innate immune system. Trends in Immunol 23(3):130–135Google Scholar
  128. 128.
    Gallucci S, Matzinger P (2001) Danger signals: SOS to the immune system. Curr Opin Immunol 13(1):114–119Google Scholar
  129. 129.
    Wells AD, Rai SK, Salvato MS, Band H, Malkovsky M (1998) Hsp72-mediated augmentation of MHC class I surface expression and endogenous antigen presentation. Int Immunol 10(5):609–617Google Scholar
  130. 130.
    Wells AD, Malkovsky M (2000) Heat shock proteins, tumor immunogenicity and antigen presentation: an integrated view. Immunol Today 21(3):129–132Google Scholar
  131. 131.
    Suzue K, Zhou X, Eisen HN, Young RA (1997) Heat shock fusion proteins as vehicles for antigen delivery into the major histocompatibility complex class I presentation pathway. Proc Natl Acad Sci USA 94(24):13146–13151Google Scholar
  132. 132.
    Chu NR, Wu HB, Wu T, Boux LJ, Siegel MI, Mizzen LA (2000) Immunotherapy of a human papillomavirus (HPV) type 16 E7-expressing tumour by administration of fusion protein comprising Mycobacterium bovis bacille Calmette-Guerin (BCG) hsp65 and HPV16 E7. Clin and Exp Immunol 121(2):216–225Google Scholar
  133. 133.
    Geng H, Zhang GM, Xiao H, Yuan Y, Li D, Zhang H, Qiu H, He YF, Feng ZH (2006) HSP70 vaccine in combination with gene therapy with plasmid DNA encoding sPD-1 overcomes immune resistance and suppresses the progression of pulmonary metastatic melanoma. Int J Cancer 118(11):2657–2664Google Scholar
  134. 134.
    Chen CH, Wang TL, Hung CF, Yang Y, Young RA, Pardoll DM, Wu TC (2000) Enhancement of DNA vaccine potency by linkage of antigen gene to an HSP70 gene. Cancer Res 60(4):1035–1042Google Scholar
  135. 135.
    Ji H, Wang TL, Chen CH, Pai SI, Hung CF, Lin KY, Kurman RJ, Pardoll DM, Wu TC (1999) Targeting human papillomavirus type 16 E7 to the endosomal/lysosomal compartment enhances the antitumor immunity of DNA vaccines against murine human papillomavirus type 16 E7-expressing tumors. Hum Gene Ther 10(17):2727–2740Google Scholar
  136. 136.
    Williams JA, Carnes AE, Hodgson CP (2009) Plasmid DNA vaccine vector design: impact on efficacy, safety and upstream production. Biotechnol Adv 27(4):353–370Google Scholar
  137. 137.
    Sato Y, Roman M, Tighe H, Lee D, Corr M, Nguyen MD, Silverman GJ, Lotz M, Carson DA, Raz E (1996) Immunostimulatory DNA sequences necessary for effective intradermal gene immunization. Sci 273(5273):352–354Google Scholar
  138. 138.
    Schneeberger A, Wagner C, Zemann A, Luhrs P, Kutil R, Goos M, Stingl G, Wagner SN (2004) CpG motifs are efficient adjuvants for DNA cancer vaccines. J invest Derm 123(2):371–379Google Scholar
  139. 139.
    McCluskie MJ, Weeratna RD, Davis HL (2000) The role of CpG in DNA vaccines. Springer Semin Immunopathology 22(1–2):125–132Google Scholar
  140. 140.
    Barber GN (2011) Innate immune DNA sensing pathways: STING, AIMII and the regulation of interferon production and inflammatory responses. Curr Opin Immunol 23(1):10–20MathSciNetGoogle Scholar
  141. 141.
    Vilaysane A, Muruve DA (2009) The innate immune response to DNA. Semin Immunol 21(4):208–214Google Scholar
  142. 142.
    Sharma S, Fitzgerald KA (2011) Innate immune sensing of DNA. PLoS Pathog 7(4):e1001310Google Scholar
  143. 143.
    Herrada AA, Rojas-Colonelli N, Gonzalez-Figueroa P, Roco J, Oyarce C, Ligtenberg MA, Lladser A (2012) Harnessing DNA-induced immune responses for improving cancer vaccines. Hum Vaccines Immunother 8(11):1682–1693Google Scholar
  144. 144.
    Engelhorn ME, Guevara-Patino JA, Merghoub T, Liu C, Ferrone CR, Rizzuto GA, Cymerman DH, Posnett DN, Houghton AN, Wolchok JD (2008) Mechanisms of immunization against cancer using chimeric antigens. Mol Ther 16(4):773–781Google Scholar
  145. 145.
    Staff C, Mozaffari F, Haller BK, Wahren B, Liljefors M (2011) A Phase I safety study of plasmid DNA immunization targeting carcinoembryonic antigen in colorectal cancer patients. Vaccine 29(39):6817–6822Google Scholar
  146. 146.
    Conry RM, Curiel DT, Strong TV, Moore SE, Allen KO, Barlow DL, Shaw DR, LoBuglio AF (2002) Safety and immunogenicity of a DNA vaccine encoding carcinoembryonic antigen and hepatitis B surface antigen in colorectal carcinoma patients. Clin Cancer Res 8(9):2782–2787Google Scholar
  147. 147.
    Saade F, Petrovsky N (2012) Technologies for enhanced efficacy of DNA vaccines. Expert Rev Vaccines 11(2):189–209Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Department of Medicine, Wisconsin Institutes for Medical ResearchUniversity of WisconsinMadisonUSA

Personalised recommendations