Engineering in Translational Medicine: An Introduction

Chapter

Abstract

Molecular and personalized medicine is the future for patient management. Translational medicine, a continuum of research that spans from basic science to clinical applications, is the key to twenty-first century personalized medicine. Engineering is an indispensable component of translational medicine. This book will cover a broad spectrum of engineering research in translational medicine, where leaders in each research topic provide a state-of-the-art summary in 34 chapters on various topics such as cell and tissue engineering (6 chapters), genetic and protein engineering (10 chapters), nanoengineering (10 chapters), biomedical instrumentation (4 chapters), and theranostics and other novel approaches (4 chapters). This book will give the readers a comprehensive and in-depth overview of a broad array of research areas, which can serve as an invaluable reference book for scientists/students/clinicians both new to engineering and currently working in this area.

Keywords

Migration Toxicity Coherence Radionuclide Arena 

References

  1. 1.
    DiMasi JA, Hansen RW, Grabowski HG (2003) The price of innovation: new estimates of drug development costs. J Health Econ 22(2):151–185CrossRefGoogle Scholar
  2. 2.
    Josephson L, Rudin M (2013) Barriers to clinical translation with diagnostic drugs. J Nucl Med 54(3):329–332. doi: 10.2967/jnumed.112.107615 CrossRefGoogle Scholar
  3. 3.
    Passier R, van Laake LW, Mummery CL (2008) Stem-cell-based therapy and lessons from the heart. Nature 453(7193):322–329. doi: 10.1038/nature07040 CrossRefGoogle Scholar
  4. 4.
    Contag CH, Bachmann MH (2002) Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng 4:235–260CrossRefGoogle Scholar
  5. 5.
    Badr CE, Tannous BA (2011) Bioluminescence imaging: progress and applications. Trends Biotechnol 29(12):624–633. doi: 10.1016/j.tibtech.2011.06.010 CrossRefGoogle Scholar
  6. 6.
    Bacart J, Corbel C, Jockers R, Bach S, Couturier C (2008) The BRET technology and its application to screening assays. Biotechnol J 3(3):311–324. doi: 10.1002/biot.200700222 CrossRefGoogle Scholar
  7. 7.
    Pfleger KD, Eidne KA (2006) Illuminating insights into protein–protein interactions using bioluminescence resonance energy transfer (BRET). Nat Methods 3(3):165–174. doi: 10.1038/nmeth841 CrossRefGoogle Scholar
  8. 8.
    Elbakri A, Nelson PN, Abu Odeh RO (2010) The state of antibody therapy. Hum Immunol 71(12):1243–1250. doi: 10.1016/j.humimm.2010.09.007 CrossRefGoogle Scholar
  9. 9.
    Scott AM, Wolchok JD, Old LJ (2012) Antibody therapy of cancer. Nat Rev Cancer 12(4):278–287. doi: 10.1038/nrc3236 CrossRefGoogle Scholar
  10. 10.
    Mammen M, Chio S, Whitesides GM (1998) Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed Engl 37(20):2755–2794Google Scholar
  11. 11.
    Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9(7):537–550. doi: 10.1038/nrd3141 CrossRefGoogle Scholar
  12. 12.
    Rice J, Ottensmeier CH, Stevenson FK (2008) DNA vaccines: precision tools for activating effective immunity against cancer. Nat Rev Cancer 8(2):108–120. doi: 10.1038/nrc2326 CrossRefGoogle Scholar
  13. 13.
    Stevenson FK, Rice J, Ottensmeier CH, Thirdborough SM, Zhu D (2004) DNA fusion gene vaccines against cancer: from the laboratory to the clinic. Immunol Rev 199:156–180. doi: 10.1111/j.0105-2896.2004.00145.x CrossRefGoogle Scholar
  14. 14.
    USDA licenses DNA vaccine for treatment of melanoma in dogs (2010). J Am Vet Med Assoc 236(5):495. doi: 10.2460/javma.236.5.488 Google Scholar
  15. 15.
    Farrell D, Alper J, Ptak K, Panaro NJ, Grodzinski P, Barker AD (2010) Recent advances from the National Cancer Institute Alliance for Nanotechnology in Cancer. ACS Nano 4(2):589–594. doi: 10.1021/nn100073g CrossRefGoogle Scholar
  16. 16.
    Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5(3):161–171CrossRefGoogle Scholar
  17. 17.
    Service RF (2005) Materials and biology nanotechnology takes aim at cancer. Science 310(5751):1132–1134CrossRefGoogle Scholar
  18. 18.
    Horton MA, Khan A (2006) Medical nanotechnology in the UK: a perspective from the London Centre for Nanotechnology. Nanomedicine 2(1):42–48Google Scholar
  19. 19.
    Ptak K, Farrell D, Panaro NJ, Grodzinski P, Barker AD (2010) The NCI Alliance for Nanotechnology in Cancer: achievement and path forward. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(5):450–460. doi: 10.1002/wnan.98 CrossRefGoogle Scholar
  20. 20.
    Pero H, Faure JE (2007) European research infrastructures for the development of nanobiotechnologies. Trends Biotechnol 25(5):191–194. doi: 10.1016/j.tibtech.2007.03.001 CrossRefGoogle Scholar
  21. 21.
    Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544CrossRefGoogle Scholar
  22. 22.
    Cai W, Hsu AR, Li ZB, Chen X (2007) Are quantum dots ready for in vivo imaging in human subjects? Nanoscale Res Lett 2:265–281CrossRefGoogle Scholar
  23. 23.
    Shubayev VI, Pisanic TR II, Jin S (2009) Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev 61(6):467–477. doi: 10.1016/j.addr.2009.03.007 CrossRefGoogle Scholar
  24. 24.
    Zhou J, Liu Z, Li F (2012) Upconversion nanophosphors for small-animal imaging. Chem Soc Rev 41(3):1323–1349. doi: 10.1039/c1cs15187h CrossRefGoogle Scholar
  25. 25.
    Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI (2012) Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev 41(7):2590–2605. doi: 10.1039/c1cs15246g CrossRefGoogle Scholar
  26. 26.
    Tang F, Li L, Chen D (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 24(12):1504–1534. doi: 10.1002/adma.201104763 CrossRefGoogle Scholar
  27. 27.
    Novoselov KS, Fal’ko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490(7419):192–200. doi: 10.1038/nature11458 CrossRefGoogle Scholar
  28. 28.
    Yang K, Feng L, Shi X, Liu Z (2012) Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev 42(2):530–547. doi: 10.1039/c2cs35342c CrossRefGoogle Scholar
  29. 29.
    Zhang Y, Nayak TR, Hong H, Cai W (2012) Graphene: a versatile nanoplatform for biomedical applications. Nanoscale 4(13):3833–3842. doi: 10.1039/c2nr31040f CrossRefGoogle Scholar
  30. 30.
    Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760. doi: 10.1038/nnano.2007.387 CrossRefGoogle Scholar
  31. 31.
    Huang K, Marti AA (2012) Recent trends in molecular beacon design and applications. Anal Bioanal Chem 402(10):3091–3102. doi: 10.1007/s00216-011-5570-6 CrossRefGoogle Scholar
  32. 32.
    Tan W, Wang K, Drake TJ (2004) Molecular beacons. Curr Opin Chem Biol 8(5):547–553. doi: 10.1016/j.cbpa.2004.08.010 CrossRefGoogle Scholar
  33. 33.
    Gambhir SS, Czernin J, Schwimmer J, Silverman DH, Coleman RE, Phelps ME (2001) A tabulated summary of the FDG PET literature. J Nucl Med 42(5):1S–93SGoogle Scholar
  34. 34.
    Alauddin MM (2012) Positron emission tomography (PET) imaging with 18F-based radiotracers. Am J Nucl Med Mol Imaging 2(1):55–76Google Scholar
  35. 35.
    Wang LV, Hu S (2012) Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335(6075):1458–1462. doi: 10.1126/science.1216210 CrossRefGoogle Scholar
  36. 36.
    Khondee S, Wang TD (2013) Progress in molecular imaging in endoscopy and endomicroscopy for cancer imaging. J Healthc Eng 4(1):1–22. doi: 10.1260/2040-2295.4.1.1 CrossRefGoogle Scholar
  37. 37.
    Kelkar SS, Reineke TM (2011) Theranostics: combining imaging and therapy. Bioconjug Chem 22(10):1879–1903. doi: 10.1021/bc200151q CrossRefGoogle Scholar
  38. 38.
    Chen XS (2011) Introducing theranostics journal-from the editor-in-chief. Theranostics 1:1–2CrossRefGoogle Scholar
  39. 39.
    Becker H, Gartner C (2012) Microfluidics and the life sciences. Sci Prog 95(2):175–198CrossRefGoogle Scholar
  40. 40.
    Holmes D, Gawad S (2010) The application of microfluidics in biology. Methods Mol Biol 583:55–80. doi: 10.1007/978-1-60327-106-6_2 CrossRefGoogle Scholar
  41. 41.
    Cabral J, Moratti SC (2011) Hydrogels for biomedical applications. Future Med Chem 3(15):1877–1888. doi: 10.4155/fmc.11.134 CrossRefGoogle Scholar
  42. 42.
    Vermonden T, Censi R, Hennink WE (2012) Hydrogels for protein delivery. Chem Rev 112(5):2853–2888. doi: 10.1021/cr200157d CrossRefGoogle Scholar
  43. 43.
    Goodman M, Zapf C, Rew Y (2001) New reagents, reactions, and peptidomimetics for drug design. Biopolymers 60(3):229–245. doi: 10.1002/1097-0282(2001)60:3<229:aid-bip10034>3.0.co;2-p CrossRefGoogle Scholar
  44. 44.
    Vagner J, Qu H, Hruby VJ (2008) Peptidomimetics, a synthetic tool of drug discovery. Curr Opin Chem Biol 12(3):292–296. doi: 10.1016/j.cbpa.2008.03.009 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Departments of Radiology and Medical PhysicsUniversity of WisconsinMadisonUSA
  2. 2.University of Wisconsin Carbone Cancer CenterMadisonUSA

Personalised recommendations