Skip to main content

Slow Wave Activity as Substrate of Homeostatic Regulation

  • Chapter
  • First Online:
Dynamic Structure of NREM Sleep

Abstract

During the last 15–20 years, a new knowledge accumulated about NREM slow wave oscillations that have become the key issue of homeostatic regulation. A frequency-based classification of slow waves has been developed, differentiating between 0.1–1- and 1–4-Hz groups. The cortical <1-Hz slow activity during the so-called up states (surface-positive half wave), even ripple-like (50–200 Hz) fast activity, and down state (surface-negative half wave), an interruption of synaptic and neural activity, have been described. The alternation of these two microstates ensures a unique double working mode for the cortex, providing continuity for the contact and information processing with the environment during the up states even in deep sleep and providing a separation for trophotropic functions for further cognitive demands during the down states.

With progressive development of neuroimaging, source modeling studies on sleep slow waves by new neuroimaging tools have confirmed that the cortical areas are differentially involved in slow wave production and showed that sleep slow waves can be locally – mainly frontally – regulated. They are traveling along an anterior-posterior axis largely mediated by the so-called cingulate highway. Studies in this field emphasized that those areas with maximal involvement in slow waves’ production also show considerable overlap with the default network, paradoxically implicated in monitoring the external environment, and can be altered by sleep deprivation.

Ontogenetic studies revealed that the delta oscillation associated with rapid spindling is the agent of plastic changes of the cortex. Reactive (input-dependent) delta activity seems to be an essential element of plastic changes as early as during the neonatal development. Before the fetal brain might receive elaborated sensory inputs from the external word, spontaneous fetal movements provide sensory stimulation and drive delta-brush oscillation, contributing to the formation of cortical body maps.

The spectral power of sleep slow wave activity and the steepness of the slopes of sleep slow waves were shown to correlate positively with the gray matter volume of several cortical areas in children and adolescents between 8 and 19 years of age. When the production of cortical synapses is more efficient than their elimination (from birth until the prepubertal age), slow wave activity is high and increasing; while in adulthood, when the elimination of synapses exceeds their production, the amount of sleep slow wave activity decreases.

Discussing phylogenetic relations of slow wave activity during different vigilance states and state-dependent reactions to sensory inputs, we try to interpret some paradoxical observations on reptiles. We are proposing that the reason why reptiles are in a continuous NREM sleep like condition during behavioral waking state is the lack or underdevelopment of their cholinergic arousal system. Therefore, sensory stimulation elicits K-complex-like slow wave responses. In the waking state, reptiles apparently have sleep EEG and sleep-like EEG activity during behavioral activation. Our proposal incorporates an explanation for the lack of long-term homeostatic sleep regulation in reptiles, having at the same time short-term homeostatic slow wave supplementation in response to sensory stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achermann P, Borbély AA. Low-frequency (<1 Hz) oscillations in the human sleep electroencephalogram. Neuroscience. 1997;81(1):213–22.

    Article  PubMed  CAS  Google Scholar 

  • Albrecht D, Royl G, Kaneoke Y. Very slow oscillatory activities in lateral geniculate neurons of freely moving and anesthetized rats. Neurosci Res. 1998;32(3):209–20.

    Article  PubMed  CAS  Google Scholar 

  • Amzica F, Steriade M. Cellular substrates and laminar profile of sleep K-complex. Neuroscience. 1998;82(3):671–86.

    Article  PubMed  CAS  Google Scholar 

  • Anderson C, Horne JA. Prefrontal cortex: links between low frequency delta EEG in sleep and neuropsychological performance in healthy, older people. Psychophysiology. 2003;40(3):349–57.

    Article  PubMed  Google Scholar 

  • Arnolds DE, Aitink JW, Boeyinga P, Lopes da Silva FH. Hippocampal EEG in dog, cat and man (author’s transl). Rev Electroencephalogr Neurophysiol Clin. 1979;9(4):326–32.

    Article  PubMed  CAS  Google Scholar 

  • Aserinsky E, Kleitman N. Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science. 1953;118(3062):273–4.

    Article  PubMed  CAS  Google Scholar 

  • Bersagliere A, Achermann P. Slow oscillations in human non-rapid eye movement sleep electroencephalogram: effects of increased sleep pressure. J Sleep Res. 2010;19(1 Pt 2):228–37.

    Article  PubMed  Google Scholar 

  • Blumberg MS. An allometric analysis of the frequency of hippocampal theta: the significance of brain metabolic rate. Brain Behav Evol. 1989;34(6):351–6.

    Article  PubMed  CAS  Google Scholar 

  • Bódizs R, Kántor S, Szabó G, Szűcs A, Erőss L, Halász P. Rhythmic hippocampal slow oscillation characterizes REM sleep in humans. Hippocampus. 2001;11:747–53.

    Article  PubMed  Google Scholar 

  • Bódizs R, Békésy M, Szűcs A, Barsi P, Halász P. Sleep-dependent hippocampal slow activity correlates with waking memory performance in humans. Neurobiol Learn Mem. 2002;78(2):441–57.

    Article  PubMed  Google Scholar 

  • Borbély AA, Baumann F, Brandeis D, Strauch I, Lehmann D. Sleep deprivation: effect on sleep stages and EEG power density in man. Electroencephalogr Clin Neurophysiol. 1981;51(5):483–95.

    Article  PubMed  Google Scholar 

  • Braun AR, Balkin TJ, Wesenten NJ, Carson RE, Varga M, Baldwin P, Selbie S, Belenky G, Herscovitch P. Regional cerebral blood flow throughout the sleep-wake cycle. An H2(15)O PET study. Brain. 1997;120(Pt 7):1173–97.

    Article  PubMed  Google Scholar 

  • Buchmann A, Kurth S, Ringli M, Geiger A, Jenni OG, Huber R. Anatomical markers of sleep slow wave activity derived from structural magnetic resonance images. J Sleep Res. 2011;20(4):506–13.

    Article  PubMed  Google Scholar 

  • Bullock TH, Basar E. Comparison of ongoing compound field potentials in the brains of invertebrates and vertebrates. Brain Res. 1988;472(1):57–75.

    PubMed  CAS  Google Scholar 

  • Bullock, TH and Achimowicz JZ. A comparative survey of oscillatory brain activity, especially gamma-band rhythms. In: Symposium on “oscillatory event related brain dynamics”, Tecklenburg/Münsterland, 1993.

    Google Scholar 

  • Cirelli C, Huber R, Gopalakrishnan A, Southard TL, Tononi G. Locus ceruleus control of slow-wave homeostasis. J Neurosci. 2005;25(18):4503–11.

    Article  PubMed  CAS  Google Scholar 

  • Clemens Z, Weiss B, Szucs A, Eross L, Rásonyi G, Halász P. Phase coupling between rhythmic slow activity and gamma characterizes mesiotemporal rapid-eye-movement sleep in humans. Neuroscience. 2009;163(1):388–96.

    Article  PubMed  CAS  Google Scholar 

  • Colonnese MT, Khazipov R. “Slow activity transients” in infant rat visual cortex: a spreading synchronous oscillation patterned by retinal waves. J Neurosci. 2010;30(12):4325–37.

    Article  PubMed  CAS  Google Scholar 

  • Csercsa R, Dombovári B, Fabó D, Wittner L, Eross L, Entz L, Sólyom A, Rásonyi G, Szucs A, Kelemen A, Jakus R, Juhos V, Grand L, Magony A, Halász P, Freund TF, Maglóczky Z, Cash SS, Papp L, Karmos G, Halgren E, Ulbert I. Laminar analysis of slow wave activity in humans. Brain. 2010;133(9):2814–29.

    Article  PubMed  Google Scholar 

  • Czisch M, Wetter TC, Kaufmann C, Pollmächer T, Holsboer F, Auer DP. Altered processing of acoustic stimuli during sleep: reduced auditory activation and visual deactivation detected by a combined fMRI/EEG study. Neuroimage. 2002;16(1):251–8.

    Article  PubMed  Google Scholar 

  • Czisch M, Wehrle R, Kaufmann C, Wetter TC, Holsboer F, Pollmächer T, Auer DP. Functional MRI during sleep: BOLD signal decreases and their electrophysiological correlates. Eur J Neurosci. 2004;20(2):566–74.

    Article  PubMed  Google Scholar 

  • Czisch M, Wehrle R, Stiegler A, Peters H, Andrade K, Holsboer F, Sämann PG. Acoustic oddball during NREM sleep: a combined EEG/fMRI study. PLoS One. 2009;4(8):e6749.

    Article  PubMed  Google Scholar 

  • Czopf J, Karmos G, Gaszner P, Kelényi L. A vizuális kiváltott válasz változása terápiás atropin coma alatt. Ideggyogy Sz. 1977;30:81–9.

    Google Scholar 

  • Dang-Vu TT, Schabus M, Desseilles M, Albouy G, Boly M, Darsaud A, Gais S, Rauchs G, Sterpenich V, Vandewalle G, Carrier J, Moonen G, Balteau E, Degueldre C, Luxen A, Phillips C, Maquet P. Spontaneous neural activity during human slow wave sleep. Proc Natl Acad Sci USA. 2008;105(39):15160–5.

    Article  PubMed  Google Scholar 

  • De Vera L, González J, Rial RV. Reptilian waking EEG: slow waves, spindles and evoked potentials. Electroencephalogr Clin Neurophysiol. 1994;90(4):298–303.

    Article  PubMed  Google Scholar 

  • Depootere H, Granger P, Leonardon J, Terzano MG. Evaluation of cyclic alternating pattern in rats by automatic analysis of sleep amplitude variations. Effect of zolpidem. In: Terzano MG, Halász P, Declerck AC, editors. Phasic events and dynamic organization of sleep. New York: Raven Press; 1991. p. 17–33.

    Google Scholar 

  • Domínguez L, Morona R, Joven A, González A, López JM. Immunohistochemical localization of orexins (hypocretins) in the brain of reptiles and its relation to monoaminergic systems. J Chem Neuroanat. 2010;39(1):20–34.

    Article  PubMed  Google Scholar 

  • Dringenberg HC, Vanderwolf CH. Involvement of direct and indirect pathways in electrocorticographic activation. Neurosci Biobehav Rev. 1998;22(2):243–57.

    Article  PubMed  CAS  Google Scholar 

  • Ehlers CL, Foote SL. Ultradian periodicities in EEG and behavior in the squirrel monkey (Saimiri sciureus). Am J Primatol. 1984;7:381–9.

    Article  Google Scholar 

  • Feinberg I, Thode Jr HC, Chugani HT, March JD. Gamma distribution model describes maturational curves for delta wave amplitude, cortical metabolic rate and synaptic density. J Theor Biol. 1990;142(2):149–61.

    Article  PubMed  CAS  Google Scholar 

  • Fischgold H, Mathis P. Obnubilations, comas et stupeurs. Etudes electroenceph. Paris: Masson et Cie; 1959.

    Google Scholar 

  • Gaztelu JM, García-Austt E, Bullock TH. Electrocorticograms of hippocampal and dorsal cortex of two reptiles: comparison with possible mammalian homologs. Brain Behav Evol. 1991;37(3):144–60.

    Article  PubMed  CAS  Google Scholar 

  • Grastyan E, Karmos G. A study of a possible “dreaming” mechanism in the cat. Acta Physiol Acad Sci Hung. 1961;20:41–50.

    PubMed  CAS  Google Scholar 

  • Halász P. K-complex, a reactive EEG graphoelement of NREM sleep: an old chap in a new garment. Sleep Med Rev. 2005;9(5):391–412.

    Article  PubMed  Google Scholar 

  • Halász P. The role of the non-specific sensory activation in sleep regulation and in the pathomechanism of generalized epilepsy with generalized spike-wave discharge. Doctoral thesis, The Hungarian Academy of Sciences, Budapest; 1982.

    Google Scholar 

  • Hanlon EC, Vyazovskiy VV, Faraguna U, Tononi G, Cirelli C. Synaptic potentiation and sleep need: clues from molecular and electrophysiological studies. Curr Top Med Chem. 2011;11(19):2472–82.

    PubMed  CAS  Google Scholar 

  • Hilakivi I, Mäkelä J, Leppävuori A, Putkonen PT. Effects of two adrenergic beta-receptor blockers on the sleep cycle of the cat. Med Biol. 1978;56(3):138–43.

    PubMed  CAS  Google Scholar 

  • Hilakivi I, Kovala T, Leppävuori A, Shvaloff A. Effects of serotonin and noradrenaline uptake blockers on wakefulness and sleep in cats. Pharmacol Toxicol. 1987;60(3):161–6.

    Article  PubMed  CAS  Google Scholar 

  • Hofle N, Paus T, Reutens D, Fiset P, Gotman J, Evans AC, Jones BE. Regional cerebral blood flow changes as a function of delta and spindle activity during slow wave sleep in humans. J Neurosci. 1997;17(12):4800–8.

    PubMed  CAS  Google Scholar 

  • Huesa G, van den Pol AN, Finger TE. Differential distribution of hypocretin (orexin) and melanin-concentrating hormone in the goldfish brain. J Comp Neurol. 2005;488(4):476–91.

    Article  PubMed  CAS  Google Scholar 

  • Hughes SW, Lorincz ML, Parri HR, Crunelli V. Infraslow (<0.1 Hz) oscillations in thalamic relay nuclei basic mechanisms and significance to health and disease states. Prog Brain Res. 2011;193:145–62.

    Article  PubMed  Google Scholar 

  • Hunsaker 2nd D, Lansing RW. Electroencephalographic studies of reptiles. J Exp Zool. 1962;149:21–32.

    Article  PubMed  Google Scholar 

  • Jahnke K, von Wegner F, Morzelewski A, Borisov S, Maischein M, Steinmetz H, Laufs H. To wake or not to wake? The two-sided nature of the human K-complex. Neuroimage. 2012;59(2):1631–8.

    Article  PubMed  Google Scholar 

  • Jones BE. From waking to sleeping: neuronal and chemical substrates. Trends Pharmacol Sci. 2005;26(11):578–86.

    Article  PubMed  CAS  Google Scholar 

  • Jouvet M, Michel F, Courjon J. On a stage of rapid cerebral electrical activity in the course of physiological sleep. C R Seances Soc Biol Fil. 1959;153:1024–8.

    PubMed  CAS  Google Scholar 

  • Kaufmann C, Wehrle R, Wetter TC, Holsboer F, Auer DP, Pollmächer T, Czisch M. Brain activation and hypothalamic functional connectivity during human non-rapid eye movement sleep: an EEG/fMRI study. Brain. 2006;129(Pt 3):655–67.

    Article  PubMed  CAS  Google Scholar 

  • Khazipov R, Sirota A, Leinekugel X, Holmes GL, Ben-Ari Y, Buzsáki G. Early motor activity drives spindle bursts in the developing somatosensory cortex. Nature. 2004;432(7018):758–61.

    Article  PubMed  CAS  Google Scholar 

  • Kleinlogel H. Sleep in various species of laboratory animals. Neuropsychobiology. 1983;9(2–3):174–7.

    Article  PubMed  CAS  Google Scholar 

  • Kurth S, Jenni OG, Riedner BA, Tononi G, Carskadon MA, Huber R. Characteristics of sleep slow waves in children and adolescents. Sleep. 2010a;33(4):475–80.

    PubMed  Google Scholar 

  • Kurth S, Ringli M, Geiger A, LeBourgeois M, Jenni OG, Huber R. Mapping of cortical activity in the first two decades of life: a high-density sleep electroencephalogram study. J Neurosci. 2010b;30(40):13211–9.

    Article  PubMed  CAS  Google Scholar 

  • Lakatos P, Karmos G, Mehta AD, Ulbert I, Schroeder CE. Entrainment of neuronal oscillations as a mechanism of attentional selection. Science. 2008;320(5872):110–3.

    Article  PubMed  CAS  Google Scholar 

  • Lambertz M, Langhorst P. Simultaneous changes of rhythmic organization in brainstem neurons, respiration, cardiovascular system and EEG between 0.05 Hz and 0.5 Hz. J Auton Nerv Syst. 1998;68(1–2):58–77.

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Kim D, Shin HS. Lack of delta waves and sleep disturbances during non-rapid eye movement sleep in mice lacking alpha1G-subunit of T-type calcium channels. Proc Natl Acad Sci USA. 2004;101(52):18195–9.

    Article  PubMed  CAS  Google Scholar 

  • Loomis AL, Harvey EN, Hobart G. Further observations on the potential rhythms of the cerebral cortex during sleep. Science. 1935;82(2122):198–200.

    Article  PubMed  CAS  Google Scholar 

  • Loomis AL, Harvey EN, Hobart GA. Distribution of disturbance-patterns in the human electroencephalogram, with special reference to sleep. J Neurophysiol. 1938;1(5):413–30.

    Google Scholar 

  • Lörincz ML, Geall F, Bao Y, Crunelli V, Hughes SW. ATP-dependent infra-slow (<0.1 Hz) ­oscillations in thalamic networks. PLoS One. 2009;4(2):e4447.

    Article  PubMed  Google Scholar 

  • Magnin M, Bastuji H, Garcia-Larrea L, Mauguière F. Human thalamic medial pulvinar nucleus is not activated during paradoxical sleep. Cereb Cortex. 2004;14(8):858–62.

    Article  PubMed  Google Scholar 

  • Maquet P. Functional neuroimaging of normal human sleep by positron emission tomography. J Sleep Res. 2000;9(3):207–31.

    Article  PubMed  CAS  Google Scholar 

  • Maquet P, Phillips C. Functional brain imaging of human sleep. J Sleep Res. 1998;7 Suppl 1:42–7.

    Article  PubMed  Google Scholar 

  • Marshall L, Helgadóttir H, Mölle M, Born J. Boosting slow oscillations during sleep potentiates memory. Nature. 2006;444(7119):610–3.

    Article  PubMed  CAS  Google Scholar 

  • Marzano C, Ferrara M, Curcio G, De Gennaro L. The effects of sleep deprivation in humans: topographical electroencephalogram changes in non-rapid eye movement (NREM) sleep versus REM sleep. J Sleep Res. 2010;19(2):260–8.

    Article  PubMed  Google Scholar 

  • Massimini M, Rosanova M, Mariotti M. EEG slow (approximately 1 Hz) waves are associated with nonstationarity of thalamo-cortical sensory processing in the sleeping human. J Neurophysiol. 2003;89(3):1205–13.

    Article  PubMed  Google Scholar 

  • McKeown MJ, Humphries C, Achermann P, Borbély AA, Sejnowski TJ. A new method for detecting state changes in the EEG: exploratory application to sleep data. J Sleep Res. 1998;7:48–56.

    Article  PubMed  Google Scholar 

  • Miyamoto H, Katagiri H, Hensch T. Experience-dependent slow-wave sleep development. Nat Neurosci. 2003;6(6):553–4.

    Article  PubMed  CAS  Google Scholar 

  • Mölle M, Marshall L, Gais S, Born J. Learning increases human electroencephalographic coherence during subsequent slow sleep oscillations. Proc Natl Acad Sci USA. 2004;101(38):13963–8.

    Article  PubMed  Google Scholar 

  • Monto S, Palva S, Voipio J, Palva JM. Very slow EEG fluctuations predict the dynamics of stimulus detection and oscillation amplitudes in humans. J Neurosci. 2008;28(33):8268–72.

    Article  PubMed  CAS  Google Scholar 

  • Moroni F, Nobili L, De Carli F, Massimini M, Francione S, Marzano C, Proserpio P, Cipolli C, De Gennaro L, Ferrara M. Slow EEG rhythms and inter-hemispheric synchronization across sleep and wakefulness in the human hippocampus. Neuroimage. 2011;60(1):497–504.

    Article  PubMed  Google Scholar 

  • Moruzzi G, Magoun HW. Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol. 1949;1(4):455–73.

    PubMed  CAS  Google Scholar 

  • Murphy M, Riedner BA, Huber R, Massimini M, Ferrarelli F, Tononi G. Source modeling sleep slow waves. Proc Natl Acad Sci USA. 2009;106(5):1608–13.

    Article  PubMed  CAS  Google Scholar 

  • Nicolau MC, Akaârir M, Gamundí A, González J, Rial RV. Why we sleep: the evolutionary pathway to the mammalian sleep. Prog Neurobiol. 2000;62(4):379–406.

    Article  PubMed  CAS  Google Scholar 

  • Nofzinger EA, Mintun MA, Wiseman M, Kupfer DJ, Moore RY. Forebrain activation in REM sleep: an FDG PET study. Brain Res. 1997;770(1–2):192–201.

    Article  PubMed  CAS  Google Scholar 

  • Novak P, Lepicovska V. Slow modulation of EEG. Neuroreport. 1992;3(2):189–92.

    Article  PubMed  CAS  Google Scholar 

  • Panula P. Hypocretin/orexin in fish physiology with emphasis on zebrafish. Acta Physiol (Oxf). 2010;198(3):381–6.

    Article  CAS  Google Scholar 

  • Pappenheimer JR, Koski G, Fencl V, Karnovsky ML, Krueger J. Extraction of sleep-promoting factor S from cerebrospinal fluid and from brains of sleep-deprived animals. J Neurophysiol. 1975;38(6):1299–311.

    PubMed  CAS  Google Scholar 

  • Penttonen M, Nurminen N, Mietinnen R, Sirviö J, Henze DA, Csicsvári J, Buzsáki G. Ultra-slow oscillation (0.025 Hz) triggers hippocampal afterdischarges in Wistar rats. Neuroscience. 1999;94:735–43.

    Article  PubMed  CAS  Google Scholar 

  • Pereda E, Gamundi A, Rial R, González J. Non-linear behaviour of human EEG: fractal exponent versus correlation dimension in awake and sleep stages. Neurosci Lett. 1998;250(2):91–4.

    Article  PubMed  CAS  Google Scholar 

  • Picchioni D, Horovitz SG, Fukunaga M, Carr WS, Meltzer JA, Balkin TJ, Duyn JH, Braun AR. Infraslow EEG oscillations organize large-scale cortical-subcortical interactions during sleep: a combined EEG/fMRI study. Brain Res. 2011;1374:63–72.

    Article  PubMed  CAS  Google Scholar 

  • Prechtl JC, von der Emde G, Wolfart J, Karamürsel S, Akoev GN, Andrianov YN, Bullock TH. Sensory processing in the pallium of a mormyrid fish. J Neurosci. 1998;18(18):7381–93.

    PubMed  CAS  Google Scholar 

  • Rattenborg NC. Evolution of slow-wave sleep and palliopallial connectivity in mammals and birds: a hypothesis. Brain Res Bull. 2006;69(1):20–9.

    Article  PubMed  Google Scholar 

  • Rial RV, Akaârir M, Gamundí A, Nicolau C, Garau C, Aparicio S, Tejada S, Gené L, González J, De Vera LM, Coenen AM, Barceló P, Esteban S. Evolution of wakefulness, sleep and hibernation: from reptiles to mammals. Neurosci Biobehav Rev. 2010;34(8):1144–60.

    Article  PubMed  Google Scholar 

  • Riedner BA, Vyazovskiy VV, Huber R, Massimini M, Esser S, Murphy M, Tononi G. Sleep homeostasis and cortical synchronization: III. A high-density EEG study of sleep slow waves in humans. Sleep. 2007;30(12):1643–57.

    PubMed  Google Scholar 

  • Riedner BA, Hulse BK, Murphy MJ, Ferrarelli F, Tononi G. Temporal dynamics of cortical sources underlying spontaneous and peripherally evoked slow waves. Prog Brain Res. 2011;193:201–18.

    Article  PubMed  Google Scholar 

  • Ringli M, Huber R. Developmental aspects of sleep slow waves: linking sleep, brain maturation and behavior.Prog Brain Res. 2011;193:63–82.

    Article  PubMed  Google Scholar 

  • Robinson TE. Hippocampal rhythmic slow activity (RSA; theta): a critical analysis of selected studies and discussion of possible species-differences. Brain Res. 1980;203(1):69–101.

    PubMed  CAS  Google Scholar 

  • Ruskin DN, Bergstrom DA, Kaneoke Y, Patel BN, Twery MJ, Walters JR. Multisecond oscillations in firing rate in the basal ganglia: robust modulation by dopamine receptor activation and anesthesia. J Neurophysiol. 1999;81(5):2046–55.

    PubMed  CAS  Google Scholar 

  • Schabus M, Dang-Vu TT, Albouy G, Balteau E, Boly M, Carrier J, Darsaud A, Degueldre C, Desseilles M, Gais S, Phillips C, Rauchs G, Schnakers C, Sterpenich V, Vandewalle G, Luxen A, Maquet P. Hemodynamic cerebral correlates of sleep spindles during human non-rapid eye movement sleep. Proc Natl Acad Sci USA. 2007;104(32):13164–9.

    Article  PubMed  CAS  Google Scholar 

  • Schoenenberger GA, Maier PF, Tobler JH, Monnier M. A naturally occurring delta-EEG enhancing nonapeptide in rabbits. X. Final isolation, characterization and activity test. Pflugers Arch. 1977;369(2):99–109.

    Article  PubMed  CAS  Google Scholar 

  • Steriade M. Grouping of brain rhythms in corticothalamic systems. Neuroscience. 2006;137(4):1087–106.

    Article  PubMed  CAS  Google Scholar 

  • Steriade M, Contreras D, Curró Dossi R, Nuñez A. The slow (<1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks. J Neurosci. 1993a;13(8):3284–99.

    PubMed  CAS  Google Scholar 

  • Steriade M, Nuñez A, Amzica F. Intracellular analysis of relations between the slow (<1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. J Neurosci. 1993b;13(8):3266–83.

    PubMed  CAS  Google Scholar 

  • Steriade M, Nuñez A, Amzica F. A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci. 1993c;13(8):3252–65.

    PubMed  CAS  Google Scholar 

  • Stern JM, Caporro M, Haneef Z, Yeh HJ, Buttinelli C, Lenartowicz A, Mumford JA, Parvizi J, Poldrack R. A functional imaging of sleep vertex sharp transients. Clin Neurophysiol. 2011;122(7):1382–6.

    Article  PubMed  Google Scholar 

  • Tinguely G, Finelli LA, Landolt HP, Borbély AA, Achermann P. Functional EEG topography in sleep and waking: state-dependent and state-independent features. Neuroimage. 2006;32(1):283–92.

    Article  PubMed  Google Scholar 

  • Tobler I, Borbély AA. The effect of 3-h and 6-h sleep deprivation on sleep and EEG spectra of the rat. Behav Brain Res. 1990;36(1–2):73–8.

    Article  PubMed  CAS  Google Scholar 

  • Trachsel L, Dijk DJ, Brunner DP, Klene C, Borbély AA. Effect of zopiclone and midazolam on sleep and EEG spectra in a phase-advanced sleep schedule. Neuropsychopharmacology. 1990;3(1):11–8.

    PubMed  CAS  Google Scholar 

  • Vanderwolf CH. Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr Clin Neurophysiol. 1969;26(4):407–18.

    Article  PubMed  CAS  Google Scholar 

  • Vanhatalo S, Tallgren P, Andersson S, Sainio K, Voipio J, Kaila K. DC-EEG discloses prominent, very slow activity patterns during sleep in preterm infants. Clin Neurophysiol. 2002;113(11):1822–5.

    Article  PubMed  Google Scholar 

  • Vanhatalo S, Palva JM, Holmes MD, Miller JW, Voipio J, Kaila K. Infraslow oscillations modulate excitability and interictal epileptic activity in the human cortex during sleep. Proc Natl Acad Sci USA. 2004;101(14):5053–7.

    Article  PubMed  CAS  Google Scholar 

  • Walter WG. The location of cerebral tumours by electro-encephalography. Lancet. 1936;228(5893):305–8.

    Article  Google Scholar 

  • Webb WB, Agnew Jr HW. Stage 4 sleep: influence of time course variables. Science. 1971;174(4016):1354–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Halász, P., Bódizs, R. (2013). Slow Wave Activity as Substrate of Homeostatic Regulation. In: Dynamic Structure of NREM Sleep. Springer, London. https://doi.org/10.1007/978-1-4471-4333-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4333-8_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4332-1

  • Online ISBN: 978-1-4471-4333-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics