Skip to main content

The Autonomic Nervous System

  • Chapter
  • First Online:
Heart Rate Variability

Abstract

Outline: In this chapter we introduce the autonomic nervous system. Principles and newer views from neuroscience are presented and discussed. It has a special focus on effects and interactions of the autonomic nervous system and the cardiovascular and respiratory systems, which are important for the understanding of the physiology and pathophysiology of heart rate variations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alboni P, Alboni M, Gianfranchi L. Diving bradycardia: a mechanism of defence against hypoxic damage. J Cardiovasc Med (Hagerstown). 2011;12:422–7.

    Article  Google Scholar 

  • Allen AM, Adams JM, Guyenet PG. Role of the spinal cord in generating the 2- to 6-Hz rhythm in rat sympathetic outflow. Am J Physiol 1993;264:R938–45.

    PubMed  CAS  Google Scholar 

  • Barman SM, Gebber GL. Rostral ventrolateral medullary and caudal medullary raphe neurons with activity correlated to the 10-Hz rhythm in sympathetic nerve discharge. J Neurophysiol. 1992;68:1535–47.

    PubMed  CAS  Google Scholar 

  • Barman SM, Gebber GL. “Rapid” rhythmic discharges of sympathetic nerves: sources, mechanisms of generation, and physiological relevance. J Biol Rhythms. 2000;15:365–79.

    Article  PubMed  CAS  Google Scholar 

  • Barman SM, Kenney MJ. Methods of analysis and physiological relevance of rhythms in sympathetic nerve discharge. Clin Exp Pharmacol Physiol. 2007;34:350–5.

    Article  PubMed  CAS  Google Scholar 

  • Berntson GG, Cacioppo JT. Heart rate variability: stress and psychiatric conditions. In: Malik M, Camm AJ, editors. Dynamic electrocardiography. New York: Futura; 2004. p. 57–64.

    Chapter  Google Scholar 

  • Berntson GG, Cacioppo JT, Fieldstone A. Illusions, arithmetic, and the bidirectional modulation of vagal control of the heart. Biol Psychol. 1996;44:1–17.

    Article  PubMed  CAS  Google Scholar 

  • Berthoud HR, Neuhuber WL. Functional anatomy o afferent vagal system. Auton Neurosci. 2000;85:1–17.

    Article  PubMed  CAS  Google Scholar 

  • Brook RD, Julius S. Autonomic imbalance, hypertension and cardiovascular risk. Am J Hypertens. 2001;13:112S–22.

    Article  Google Scholar 

  • Brooks VL, Freeman KL, Chow KA. Excitatory amino acids in rostral ventrolateral medulla support blood pressure during water deprivation in rats. Am J Physiol Heart Circ Physiol. 2004;286:H1642–8.

    Article  PubMed  CAS  Google Scholar 

  • Cacioppo JT. Social neuroscience: autonomic, neuroendocrine, and immune responses to stress. Psychophysiology. 1994;31:113–28.

    Article  PubMed  CAS  Google Scholar 

  • Calhoun DA, Oparil S. Hypertension and sympathetic nervous system activity. In: Robertson DW, editor. Primer on the autonomic nervous system. London: Academic Press; 2012. p. 241–44.

    Google Scholar 

  • Coote JH. A role for the paraventricular nucleus of the hypothalamus in the autonomic control of heart and kidney. Exp Physiol. 2005;90:169–73.

    Article  PubMed  CAS  Google Scholar 

  • Coote JH, Hilton SM, Zbrozyna AW. The ponto-medullary area integrating the defence reaction in the cat and its influence on muscle blood flow. J Physiol. 1973;229:257–74.

    PubMed  CAS  Google Scholar 

  • Dempsey JA, Sheel AW, St. Croix CM, Morgan BJ. Respiratory influences on sympathetic vasomotor outflow in humans. Respir Physiol Neurobiol. 2002;130:3–20.

    Article  PubMed  Google Scholar 

  • DiBona GF, Kopp UC. Neural control of real function. Physiol Rev. 1997;77:75–197.

    PubMed  CAS  Google Scholar 

  • Dittmar C. Über die Lage des sogenannten Gefässcentrums in der Medulla oblongata. Ber Verh Sachs Akad Wiss Leipzig Math Phys Kl 1873;25:449–69.

    Google Scholar 

  • Eisenhofer G, Kopin IJ, Goldstein DS. Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol Rev. 2004;56:331–49.

    Article  PubMed  CAS  Google Scholar 

  • Ericsson A, Arias C, Sawchenko PE. Evidence for an intramedullary prostaglandin-dependent mechanism in the activation of stress-related neuroendocrine circuitry by intravenous interleukin-1. J Neurosci. 1997;17:7166–79.

    PubMed  CAS  Google Scholar 

  • Esler M. The sympathertic system and hypertension. Am J Hypertens. 2000;3:99S–105.

    Article  Google Scholar 

  • Franchini KG, Cowley AW. Autonomic control of cardiac function. In: Robertson D, editor. Primer on the autonomic nervous system. Amsterdam/Boston: Elsevier/AP; 2012. p. 134–8.

    Google Scholar 

  • Gray H. Grays anatomy of the human body. Philadelphia: Lea and Febiger; 1918.

    Google Scholar 

  • Geerling JC, Engeland WC, Kawata M, Loewy AD. Aldosterone target neurons in the nucleus tractus solitarius drive sodium appetite. J Neurosci. 2006;26:411–7.

    Article  PubMed  CAS  Google Scholar 

  • Green JH, Heffron PF. Studies on the relationship between baroreceptor and sympathetic activity. Q J Exp Physiol Cogn Med Sci. 1968;53:23–32.

    PubMed  CAS  Google Scholar 

  • Guyenet PG. Neural structures that mediate sympathoexcitation during hypoxia. Respir Physiol. 2000;121:147–62.

    Article  PubMed  CAS  Google Scholar 

  • Guyenet PG. The sympathetic control of blood pressure. Nat Rev Neurosci. 2006;7:335–46.

    Article  PubMed  CAS  Google Scholar 

  • Guyenet PG, Koshiya N, Huangfu D, Baraban SC, Stornetta RL, Li YW. Role of medulla oblongata in generation of sympathetic and vagal outflows. Prog Brain Res. 1996;107:127–44.

    Article  PubMed  CAS  Google Scholar 

  • Horeyseck G, Jänig W, Kirchner F, Thämer V. Activation and inhibition of muscle and cutaneous postganglionic neurones to hindlimb during hypothalamically induced vasoconstriction and atropine-sensitive vasodilation. Pflugers Arch. 1976;361:231–40.

    Article  PubMed  CAS  Google Scholar 

  • Huang BS, Leenen FH. Blockade of brain mineralocorticoid receptors or Na+ channels prevents sympathetic hyperactivity and improves cardiac function in rats post-MI. Am J Physiol Heart Circ Physiol. 2005;288:H2491–7.

    Article  PubMed  CAS  Google Scholar 

  • Iversen S, Iversen L, Spaer CB, et al. The autonomous nervous system and the hypothalamus. In: Kandel ER, editor. Principles of neural science. 4th ed. New York: McGraw Hill; 2000. p. 960–81.

    Google Scholar 

  • Jänig W, Habler HJ. Neurophysiological analysis of target related sympathetic pathways – from animals to humans: similarities and differences. Acta Physiol Scand. 2003;177:255–74.

    Article  PubMed  Google Scholar 

  • Jänig W, Sundlöf G, Wallin BG. Discharge patterns of sympathetic neurons supplying skeletal muscle and skin in man and cat. J Auton Nerv Syst. 1983;7:239–56.

    Article  PubMed  Google Scholar 

  • Jennings GL. Noradrenaline spillover and microneurography measurements in patients with primary hypertension. J Hypertens. 1998;16 Suppl 3:S35–8.

    CAS  Google Scholar 

  • Johansson M, Rundqvist B, Eisenhofer G, Friberg P. Cardiorenal epinephrine kinetics: evidence for neuronal release in the human heart. Am J Physiol. 1997;273:H2178–85.

    PubMed  CAS  Google Scholar 

  • Jose AD, Collison D. The normal range and determinants of the intrinsic heart rate in man. Cardiovasc Res. 1970;4:160–7.

    Article  PubMed  CAS  Google Scholar 

  • Kim JR, Kiefe CI, Liu K, Williams OD, Jacobs Jr DR, Oberman A. Heart rate and subsequent blood pressure in young adults: the CARDIA study. Hypertension. 1999;33:640–6.

    Article  PubMed  CAS  Google Scholar 

  • Lewis CD, Gebber GL, Zhong S, Larsen PD, Barman SM. Modes of baroreceptor-sympathetic coordination. J Neurophysiol. 2000;84:1157–67.

    PubMed  CAS  Google Scholar 

  • Lohmeier TE. The sympathetic nervous system and long-term blood pressure regulation. Am J Hypertens. 2001;14:S147–54.

    Article  Google Scholar 

  • Macefield VG, Wallin BG. The discharge behaviour of single sympathetic neurones supplying human sweat glands. J Auton Nerv Syst. 1996;61:277–86.

    Article  PubMed  CAS  Google Scholar 

  • Majewski H, Rand M, Tung LH. Activation of prejunctional B-adrenoreceptors in rat atria by adrenaline applied exogeneously or released as cotransmitter. Br J Pharmacol. 1981;73:669–79.

    Article  PubMed  CAS  Google Scholar 

  • Majewski H, Hedler L, Starke K. The noradrenaline rate in the anaesthetized rabbit: facilitation by adrenaline. Naunyn Schmiedebergs Arch Pharmacol. 1982;321:20–7.

    Article  PubMed  CAS  Google Scholar 

  • Mantoni T, Belhage B, Pott FC. Overlevelse i koldt vand. Ugeskr Laeger. 2006;168:3203–5.

    PubMed  Google Scholar 

  • McCorry LK. Physiology of the autonomic nervous system. Am J Pharm Educ. 2007;71:78.

    Article  PubMed  Google Scholar 

  • Meckler RL, Weaver LC. Comparison of the distributions of renal and splenic neurons in sympathetic ganglia. J Auton Nerv Syst. 1984;11:189–200.

    Article  PubMed  CAS  Google Scholar 

  • Morimoto S, Cassell MD, Beltz TG, Johnson AK, Davisson RL, Sigmund CD. Elevated blood pressure in transgenic mice with brain-specific expression of human angiotensinogen driven by the glial fibrillary acidic protein promoter. Circ Res. 2001;89:365–72.

    Article  PubMed  CAS  Google Scholar 

  • Morrison SF. RVLM and raphe differentially regulate sympathetic outflows to splanchnic and brown adipose tissue. Am J Physiol. 1999;276:R962–73.

    PubMed  CAS  Google Scholar 

  • Morrison SF. Differential control of sympathetic outflow. Am J Physiol Regul Integr Comp Physiol. 2001;281:R683–98.

    PubMed  CAS  Google Scholar 

  • Palatini P. Sympathetic overactivity in hypertension. A risk factor for cardiovascular disease. Curr Hypertens Rep. 2001;3 Suppl 1:S3–9.

    Article  PubMed  Google Scholar 

  • Pavlov VA, Wang H, Czura CJ, Friedman SG, Tracey KJ. The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation. Mol Med. 2003;9:125–34.

    PubMed  CAS  Google Scholar 

  • Porter TR, Eckberg DL, Fritsch JM, Rea RF, Beightol LA, Schmedtje JF, Mohanty PK. Autonomic pathophysiology in heart failure patients – sympathetic-cholinergic interrelations. J Clin Invest. 1990;85:1362–71.

    Article  PubMed  CAS  Google Scholar 

  • Quinn P, Borkowski K, Collis M. Epinephrine enhances neurogenic vasoconstriction in the rat perfused kidney. Hypertension. 1984;7:47–52.

    Article  Google Scholar 

  • Saper CB, Iversen S, Frackowiak R. Integration of sensory and motor function: the association areas of the cerebral cortex and the cognitive capabilities of the brain. In: Kandel E, editor. Principles of neural science. New York: McGraw Hill; 2000. p. 349–80.

    Google Scholar 

  • Sverrisdottir YB, Rundqvist B, Elam M. Relative burst amplitude in human muscle sympathetic nerve activity: a sensitive indicator of altered sympathetic traffic. Clin Auton Res. 1998;8:95–100.

    Article  PubMed  CAS  Google Scholar 

  • Sverrisdottir YB, Rundqvist B, Johannsson G, Elam M. Sympathetic neural burst amplitude distribution – a more specific indicator of sympathoexcitation in human heart failure. Circulation. 2000;102:2076–81.

    Article  PubMed  CAS  Google Scholar 

  • Thayer JF. On the importance of inhibition: central and peripheral manifestations of nonlinear inhibitory processes in neural systems. Dose Response. 2006;4:2–21.

    Article  PubMed  CAS  Google Scholar 

  • Thayer JF, Ahs F, Fredrikson M, Sollers 3rd JJ, Wager TD. A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health. Neurosci Biobehav Rev. 2012;36:747–56.

    Article  PubMed  Google Scholar 

  • Tulppo MP, Kiviniemi AM, Hautala AJ, Kallio M, Seppänen T, Mäkikallio TH, Huikuri HV. Physiological background of the loss of fractal heart rate dynamics. Circulation. 2005;112:314–9.

    Article  PubMed  Google Scholar 

  • Vallbo AB, Hagbarth KE, Torebjörk HE, Wallin BG. Somatosensory, proprioceptive, and sympathetic activity in human peripheral nerves. Physiol Rev. 1979;59:919–57.

    PubMed  CAS  Google Scholar 

  • Vinik AI. The conductor of the autonomic orchestra. Front Endocrinol. (Lausanne). 2012;3:71.

    Google Scholar 

  • Weaver LC, Fry HK, Meckler RL. Differential renal and splenic nerve responses to vagal and spinal afferent inputs. Am J Physiol. 1984;246:R78–87.

    PubMed  CAS  Google Scholar 

  • Zhong S, Huang ZS, Gebber GL, Barman SM. The 10-Hz sympathetic rhythm is dependent on raphe and rostral ventrolateral medullary neurons. Am J Physiol Regul Integr Comp Physiol. 1993;264:R857–66.

    CAS  Google Scholar 

  • Zimmerman MC, Davisson RL. Redox signaling in central neural regulation of cardiovascular function. Prog Biophys Mol Biol. 2004;84:125–49.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Ernst, G. (2014). The Autonomic Nervous System. In: Heart Rate Variability. Springer, London. https://doi.org/10.1007/978-1-4471-4309-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4309-3_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4308-6

  • Online ISBN: 978-1-4471-4309-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics