Skip to main content

Coronary Atherosclerosis Imaging by Coronary CT Angiography

  • Chapter
  • First Online:
Book cover Atherosclerosis: Clinical Perspectives Through Imaging

Abstract

Coronary computed tomography angiography (CTA) provides high resolution, non-invasive visualization of the coronary arteries and coronary atherosclerosis. Recent technologic advances in coronary CTA image acquisition and reconstruction have dramatically reduced patient radiation exposure to relatively low levels while simultaneously improving image quality. Large-scale, multicenter studies have consistently demonstrated coronary CTA to be highly accurate compared to invasive coronary angiography for the detection of coronary artery disease (CAD), prompting the development of guidelines regarding its performance, interpretation and results reporting; as well as Appropriate Use Criteria to promote proper patient selection for testing. Accumulating data show that coronary CTA-based semiquantitative and quantitative measures of plaque characteristics, composition, and geometry have sufficient reproducibility and accuracy as compared to intravascular ultrasound, intravascular ultrasound with radiofrequency backscatter, optical coherence tomography and near-infrared spectroscopy. Beyond its role as a diagnostic test, the burden of coronary artery disease (CAD) visualized on coronary CTA (or absence thereof) ­provides powerful prognostic information, incremental to clinical risk factors and coronary artery calcium severity. Emerging data validating CT-based plaque characteristics such as the degree of remodeling (remodeling index), plaque volume and low plaque CT density may have incremental value for the prediction of adverse cardiovascular events. Similarly, the use of dual-energy imaging to better define plaque characteristics and CT perfusion imaging may prove to further enhance the clinical yield of coronary CTA. Ultimately, to realize the full potential of coronary CTA, studies are needed assessing the potential benefit of intensive preventative therapies that are differentially applied based on coronary CTA results, such as to further define the optimal treatment of advanced non-obstructive CAD or patients with potentially high-risk plaque features on coronary CTA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van der Wal AC, Becker AE, van der Loos CM, Das PK. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation. 1994;89(1):36–44.

    Article  PubMed  Google Scholar 

  2. Virmani R, Burke AP, Kolodgie FD, Farb A. Vulnerable plaque: the pathology of unstable coronary lesions. J Interv Cardiol. 2002;15(6):439–46.

    Article  PubMed  Google Scholar 

  3. Voros S. “Does imaging paint a sugar-coated picture of diabetic vessels?”: plaque composition in diabetics by IVUS and CT angiography. J Nucl Cardiol. 2009;16(3):339–44.

    Article  PubMed  Google Scholar 

  4. Voros S, Rinehart S, Qian Z, et al. Coronary atherosclerosis imaging by coronary CT angiography: current status, correlation with intravascular interrogation and meta-analysis. JACC Cardiovasc Imaging. 2011;4(5):537–48.

    Article  PubMed  Google Scholar 

  5. Bamberg F, Sommer WH, Hoffmann V, et al. Meta-analysis and systematic review of the long-term predictive value of assessment of coronary atherosclerosis by contrast-enhanced coronary computed tomography angiography. J Am Coll Cardiol. 2011;57(24):2426–36.

    Article  PubMed  Google Scholar 

  6. Ostrom MP, Gopal A, Ahmadi N, et al. Mortality incidence and the severity of coronary atherosclerosis assessed by computed tomography angiography. J Am Coll Cardiol. 2008;52(16):1335–43.

    Article  PubMed  Google Scholar 

  7. Abbara S, Arbab-Zadeh A, Callister TQ, et al. SCCT guidelines for performance of coronary computed tomographic angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee. J Cardiovasc Comput Tomogr. 2009;3(3):190–204.

    Article  PubMed  Google Scholar 

  8. Raff GL, Abidov A, Achenbach S, et al. SCCT guidelines for the interpretation and reporting of coronary computed tomographic angiography. J Cardiovasc Comput Tomogr. 2009;3(2):122–36.

    Article  PubMed  Google Scholar 

  9. Halliburton SS, Abbara S, Chen MY, et al. SCCT guidelines on radiation dose and dose-optimization strategies in cardiovascular CT. J Cardiovasc Comput Tomogr. 2011;5(4):198–224.

    Article  PubMed  Google Scholar 

  10. Taylor AJ, Cerqueira M, Hodgson JM. ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography. A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. J Cardiovasc Comput Tomogr. 2010;4(6):407–33.

    PubMed  Google Scholar 

  11. Budoff MJ, Cohen MC, Garcia MJ, et al. ACCF/AHA clinical competence statement on cardiac imaging with computed tomography and magnetic resonance: a report of the American College of Cardiology Foundation/American Heart Association/American College of Physicians Task Force on Clinical Competence and Training. J Am Coll Cardiol. 2005;46(2):383–402.

    Article  PubMed  Google Scholar 

  12. Achenbach S, Ropers U, Kuettner A, et al. Randomized comparison of 64-slice single- and dual-source computed tomography coronary angiography for the detection of coronary artery disease. JACC Cardiovasc Imaging. 2008;1(2):177–86.

    Article  PubMed  Google Scholar 

  13. Chun EJ, Lee W, Choi YH, et al. Effects of nitroglycerin on the diagnostic accuracy of electrocardiogram-gated coronary computed tomography angiography. J Comput Assist Tomogr. 2008;32(1):86–92.

    Article  PubMed  Google Scholar 

  14. Hausleiter J, Meyer T, Hadamitzky M, et al. Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation. 2006;113(10):1305–10.

    Article  PubMed  Google Scholar 

  15. Hausleiter J, Meyer T, Hermann F, et al. Estimated radiation dose associated with cardiac CT angiography. JAMA. 2009;301(5):500–7.

    Article  PubMed  CAS  Google Scholar 

  16. Bischoff B, Hein F, Meyer T, et al. Impact of a reduced tube voltage on CT angiography and radiation dose: results of the PROTECTION I study. JACC Cardiovasc Imaging. 2009;2(8):940–6.

    Article  PubMed  Google Scholar 

  17. Feuchtner GM, Jodocy D, Klauser A, et al. Radiation dose reduction by using 100-kV tube voltage in cardiac 64-slice computed tomography: a comparative study. Eur J Radiol. 2010;75(1):e51–6.

    Article  PubMed  Google Scholar 

  18. Pflederer T, Rudofsky L, Ropers D, et al. Image quality in a low radiation exposure protocol for retrospectively ECG-gated coronary CT angiography. AJR Am J Roentgenol. 2009;192(4):1045–50.

    Article  PubMed  Google Scholar 

  19. Hausleiter J, Martinoff S, Hadamitzky M, et al. Image quality and radiation exposure with a low tube voltage protocol for coronary CT angiography results of the PROTECTION II Trial. JACC Cardiovasc Imaging. 2010;3(11):1113–23.

    Article  PubMed  Google Scholar 

  20. Leipsic J, Labounty TM, Mancini GB, et al. A prospective randomized controlled trial to assess the diagnostic performance of reduced tube voltage for coronary CT angiography. AJR Am J Roentgenol. 2011;196(4):801–6.

    Article  PubMed  Google Scholar 

  21. Labounty TM, Leipsic J, Min JK, et al. Effect of padding duration on radiation dose and image interpretation in prospectively ECG-triggered coronary CT angiography. AJR Am J Roentgenol. 2010;194(4):933–7.

    Article  PubMed  Google Scholar 

  22. Dewey M, Zimmermann E, Deissenrieder F, et al. Noninvasive coronary angiography by 320-row computed tomography with lower radiation exposure and maintained diagnostic accuracy: comparison of results with cardiac catheterization in a head-to-head pilot investigation. Circulation. 2009;120(10):867–75.

    Article  PubMed  Google Scholar 

  23. Leipsic J, Labounty TM, Heilbron B, et al. Adaptive statistical iterative reconstruction: assessment of image noise and image quality in coronary CT angiography. AJR Am J Roentgenol. 2010;195(3):649–54.

    Article  PubMed  Google Scholar 

  24. Leipsic J, Labounty TM, Heilbron B, et al. Estimated radiation dose reduction using adaptive statistical iterative reconstruction in coronary CT angiography: the ERASIR study. AJR Am J Roentgenol. 2010;195(3):655–60.

    Article  PubMed  Google Scholar 

  25. Raff GL. Radiation dose from coronary CT angiography: five years of progress. J Cardiovasc Comput Tomogr. 2010;4(6):365–74.

    Article  PubMed  Google Scholar 

  26. Achenbach S, Marwan M, Ropers D, et al. Coronary computed tomography angiography with a consistent dose below 1 mSv using prospectively electrocardiogram-triggered high-pitch spiral acquisition. Eur Heart J. 2010;31(3):340–6.

    Article  PubMed  Google Scholar 

  27. Bischoff B, Hein F, Meyer T, et al. Trends in radiation protection in CT: present and future status. J Cardiovasc Comput Tomogr. 2009;3 Suppl 2:S65–73.

    Article  PubMed  Google Scholar 

  28. Hausleiter J, Meyer T, Hermann F, et al. Estimated radiation dose associated with cardiac CT angiography. JAMA. 2009;301(5):500–7.

    Article  PubMed  CAS  Google Scholar 

  29. Weigold WG, Abbara S, Achenbach S, et al. Standardized medical terminology for cardiac computed tomography: a report of the Society of Cardiovascular Computed Tomography. J Cardiovasc Comput Tomogr. 2011;5(3):136–44.

    Article  PubMed  Google Scholar 

  30. Leber AW, Knez A, von Ziegler F. Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol. 2005;46(1):147–54.

    Article  PubMed  Google Scholar 

  31. Springer I, Dewey M. Comparison of multislice computed tomography with intravascular ultrasound for detection and characterization of coronary artery plaques: a systematic review. Eur J Radiol. 2008;71(2):275–82.

    Article  PubMed  Google Scholar 

  32. Pundziute G, Schuijf JD, Jukema JW, et al. Head-to-head comparison of coronary plaque evaluation between multislice computed tomography and intravascular ultrasound radiofrequency data analysis. JACC Cardiovasc Interv. 2008;1(2):176–82.

    Article  PubMed  Google Scholar 

  33. Stein PD, Yaekoub AY, Matta F, Sostman HD. 64-slice CT for diagnosis of coronary artery disease: a systematic review. Am J Med. 2008;121(8):715–25.

    Article  PubMed  Google Scholar 

  34. Budoff MJ, Dowe D, Jollis JG, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol. 2008;52(21):1724–32.

    Article  PubMed  Google Scholar 

  35. Meijboom WB, Meijs MF, Schuijf JD, et al. Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol. 2008;52(25):2135–44.

    Article  PubMed  Google Scholar 

  36. Miller JM, Rochitte CE, Dewey M, et al. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med. 2008;359(22):2324–36.

    Article  PubMed  CAS  Google Scholar 

  37. Schuetz GM, Zacharopoulou NM, Schlattmann P, Dewey M. Meta-analysis: noninvasive coronary angiography using computed tomography versus magnetic resonance imaging. Ann Intern Med. 2010;152(3):167–77.

    PubMed  Google Scholar 

  38. Achenbach S. Quantification of coronary artery stenoses by computed tomography. JACC Cardiovasc Imaging. 2008;1(4):472–4.

    Article  PubMed  Google Scholar 

  39. Nazeri I, Shahabi P, Tehrai M, Sharif-Kashani B, Nazeri A. Assessment of patients after coronary artery bypass grafting using 64-slice computed tomography. Am J Cardiol. 2009;103(5):667–73.

    Article  PubMed  Google Scholar 

  40. Cheezum MK, Hulten EA, Taylor AJ, et al. Cardiac CT angiography compared with myocardial perfusion stress testing on downstream resource utilization. J Cardiovasc Comput Tomogr. 2011;5(2):101–9.

    Article  PubMed  Google Scholar 

  41. Min JK, Gilmore A, Budoff MJ, Berman DS, O’Day K. Cost-effectiveness of coronary CT angiography versus myocardial perfusion SPECT for evaluation of patients with chest pain and no known coronary artery disease. Radiology. 2010;254(3):801–8.

    Article  PubMed  Google Scholar 

  42. Khare RK, Courtney DM, Powell ES, Venkatesh AK, Lee TA. Sixty-four-slice computed tomography of the coronary arteries: cost-effectiveness analysis of patients presenting to the emergency department with low-risk chest pain. Acad Emerg Med. 2008;15(7):623–32.

    Article  PubMed  Google Scholar 

  43. Hoffmann U, Moselewski F, Nieman K, et al. Noninvasive assessment of plaque morphology and composition in culprit and stable lesions in acute coronary syndrome and stable lesions in stable angina by multidetector computed tomography. J Am Coll Cardiol. 2006;47(8):1655–62.

    Article  PubMed  Google Scholar 

  44. Cheng VY, Nakazato R, Dey D, et al. Reproducibility of coronary artery plaque volume and composition quantification by 64-detector row coronary computed tomographic angiography: an intraobserver, interobserver, and interscan variability study. J Cardiovasc Comput Tomogr. 2009;3(5):312–20.

    Article  PubMed  Google Scholar 

  45. Klass O, Kleinhans S, Walker MJ, et al. Coronary plaque imaging with 256-slice multidetector computed tomography: interobserver variability of volumetric lesion parameters with semiautomatic plaque analysis software. Int J Cardiovasc Imaging. 2010;26(6):711–20.

    Article  PubMed  Google Scholar 

  46. Pflederer T, Schmid M, Ropers D, et al. Interobserver variability of 64-slice computed tomography for the quantification of non-calcified coronary atherosclerotic plaque. Rofo. 2007;179(9):953–7.

    Article  PubMed  CAS  Google Scholar 

  47. Rinehart S, Vazquez G, Qian Z, Murrieta L, Christian K, Voros S. Quantitative measurements of coronary arterial stenosis, plaque geometry, and composition are highly reproducible with a standardized coronary arterial computed tomographic approach in high-quality CT datasets. J Cardiovasc Comput Tomogr. 2011;5(1):35–43.

    Article  PubMed  Google Scholar 

  48. Voros S, Rinehart S, Qian Z, et al. Prospective validation of standardized, 3-dimensional, quantitative coronary computed tomographic plaque measurements using radiofrequency backscatter intravascular ultrasound as reference standard in intermediate coronary arterial lesions: results from the ATLANTA (assessment of tissue characteristics, lesion morphology, and hemodynamics by angiography with fractional flow reserve, intravascular ultrasound and virtual histology, and noninvasive computed tomography in atherosclerotic plaques) I study. JACC Cardiovasc Interv. 2011;4(2):198–208.

    Article  PubMed  Google Scholar 

  49. Petranovic M, Soni A, Bezzera H, et al. Assessment of nonstenotic coronary lesions by 64-slice multidetector computed tomography in comparison to intravascular ultrasound: evaluation of nonculprit coronary lesions. J Cardiovasc Comput Tomogr. 2009;3(1):24–31.

    Article  PubMed  Google Scholar 

  50. Pohle K, Achenbach S, Macneill B, et al. Charac­terization of non-calcified coronary atherosclerotic plaque by multi-detector row CT: comparison to IVUS. Atherosclerosis. 2007;190(1):174–80.

    Article  PubMed  CAS  Google Scholar 

  51. Cademartiri F, Mollet NR, Runza G, et al. Influence of intracoronary attenuation on coronary plaque measurements using multislice computed tomography: observations in an ex vivo model of coronary computed tomography angiography. Eur Radiol. 2005;15(7):1426–31.

    Article  PubMed  Google Scholar 

  52. Brodoefel H, Burgstahler C, Heuschmid M. Accuracy of dual-source CT in the characterization of non-calcified plaque: use of a colour-coded analysis compared with virtual histology intravascular ultrasound. Br J Radiol. 2009;82(982):805–12.

    Article  PubMed  CAS  Google Scholar 

  53. Otsuka M, Bruining N, Van Pelt NC, et al. Quantification of coronary plaque by 64-slice computed tomography: a comparison with quantitative intracoronary ultrasound. Invest Radiol. 2008;43(5):314–21.

    Article  PubMed  Google Scholar 

  54. Brodoefel H, Burgstahler C, Heuschmid M, et al. Accuracy of dual-source CT in the characterisation of non-calcified plaque: use of a colour-coded analysis compared with virtual histology intravascular ultrasound. Br J Radiol. 2009;82(982):805–12.

    Article  PubMed  CAS  Google Scholar 

  55. Stone GW, Maehara A, Lansky AJ, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364(3):226–35.

    Article  PubMed  CAS  Google Scholar 

  56. Virmani R, Burke AP, Kolodgie FD, Farb A. Pathology of the thin-cap fibroatheroma: a type of vulnerable plaque. J Interv Cardiol. 2003;16(3):267–72.

    Article  PubMed  Google Scholar 

  57. Kashiwagi M, Tanaka A, Kitabata H, et al. Feasibility of noninvasive assessment of thin-cap fibroatheroma by multidetector computed tomography. JACC Cardiovasc Imaging. 2009;2(12):1412–9.

    Article  PubMed  Google Scholar 

  58. Hachamovitch R, Di Carli MF. Methods and limitations of assessing new noninvasive tests: Part II: outcomes-based validation and reliability assessment of noninvasive testing. Circulation. 2008;117(21):2793–801.

    Article  PubMed  Google Scholar 

  59. Hulten EA, Carbonaro S, Petrillo SP, Mitchell JD, Villines TC. Prognostic value of cardiac computed tomography angiography: a systematic review and meta-analysis. J Am Coll Cardiol. 2011;57(10):1237–47.

    Article  PubMed  Google Scholar 

  60. Min JK, Shaw LJ, Devereux RB, et al. Prognostic value of multidetector coronary computed tomographic angiography for prediction of all-cause mortality. J Am Coll Cardiol. 2007;50(12):1161–70.

    Article  PubMed  Google Scholar 

  61. Lin FY, Shaw LJ, Dunning AM, et al. Mortality risk in symptomatic patients with nonobstructive coronary artery disease a prospective 2-center study of 2,583 patients undergoing 64-detector row coronary computed tomographic angiography. J Am Coll Cardiol. 2011;58(5):510–9.

    Article  PubMed  Google Scholar 

  62. Ahmadi N, Nabavi V, Hajsadeghi F, et al. Mortality incidence of patients with non-obstructive coronary artery disease diagnosed by computed tomography angiography. Am J Cardiol. 2011;107(1):10–6.

    Article  PubMed  Google Scholar 

  63. Hammer-Hansen S, Kofoed KF, Kelbaek H, et al. Volumetric evaluation of coronary plaque in patients presenting with acute myocardial infarction or stable angina pectoris-a multislice computerized tomography study. Am Heart J. 2009;157(3):481–7.

    Article  PubMed  Google Scholar 

  64. Henneman MM, Schuijf JD, Pundziute G, et al. Noninvasive evaluation with multislice computed tomography in suspected acute coronary syndrome: plaque morphology on multislice computed tomography versus coronary calcium score. J Am Coll Cardiol. 2008;52(3):216–22.

    Article  PubMed  Google Scholar 

  65. Imazeki T, Sato Y, Inoue F, et al. Evaluation of coronary artery remodeling in patients with acute coronary syndrome and stable angina by multislice computed tomography. Circ J. 2004;68(11):1045–50.

    Article  PubMed  Google Scholar 

  66. Kunimasa T, Sato Y, Sugi K, Moroi M. Evaluation by multislice computed tomography of atherosclerotic coronary artery plaques in non-culprit, remote coronary arteries of patients with acute coronary syndrome. Circ J. 2005;69(11):1346–51.

    Article  PubMed  Google Scholar 

  67. Schuijf JD, Beck T, Burgstahler C, et al. Differences in plaque composition and distribution in stable coronary artery disease versus acute coronary syndromes; non-invasive evaluation with multi-slice computed tomography. Acute Card Care. 2007;9(1):48–53.

    Article  PubMed  CAS  Google Scholar 

  68. Motoyama S, Kondo T, Sarai M, et al. Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol. 2007;50(4):319–26.

    Article  PubMed  Google Scholar 

  69. Motoyama S, Sarai M, Harigaya H, et al. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol. 2009;54(1):49–57.

    Article  PubMed  Google Scholar 

  70. Madder RD, Chinnaiyan KM, Marandici AM, Goldstein JA. Features of disrupted plaques by coronary computed tomographic angiography: correlates with invasively proven complex lesions. Circ Cardiovasc Imaging. 2011;4(2):105–13.

    Article  PubMed  Google Scholar 

  71. Leber AW, von Ziegler F, Leber AW, von Ziegler F, Becker A. Characteristics of coronary plaques before angiographic progression determined by Multi-Slice CT. Int J Cardiovasc Imaging. 2008;24(4):423–8.

    Article  PubMed  Google Scholar 

  72. Barreto M, Schoenhagen P, Nair A, et al. Potential of dual-energy computed tomography to characterize atherosclerotic plaque: ex vivo assessment of human coronary arteries in comparison to histology. J Cardiovasc Comput Tomogr. 2008;2(4):234–42.

    Article  PubMed  Google Scholar 

  73. Tanami Y, Ikeda E, Jinzaki M, et al. Computed tomographic attenuation value of coronary atherosclerotic plaques with different tube voltage: an ex vivo study. J Comput Assist Tomogr. 2010;34(1):58–63.

    Article  PubMed  Google Scholar 

  74. Blankstein R, Shturman LD, Rogers IS, et al. Adenosine-induced stress myocardial perfusion imaging using dual-source cardiac computed tomography. J Am Coll Cardiol. 2009;54(12):1072–84.

    Article  PubMed  Google Scholar 

  75. Choi EK, Choi SI, Rivera JJ, et al. Coronary computed tomography angiography as a screening tool for the detection of occult coronary artery disease in asymptomatic individuals. J Am Coll Cardiol. 2008;52(5):357–65.

    Article  PubMed  Google Scholar 

  76. Hadamitzky M, Meyer T, Hein F, et al. Prognostic value of coronary computed tomographic angiography in asymptomatic patients. Am J Cardiol. 2010;105(12):1746–51.

    Article  PubMed  Google Scholar 

  77. Schmid M, Achenbach S, Ropers D, et al. Assessment of changes in non-calcified atherosclerotic plaque volume in the left main and left anterior descending coronary arteries over time by 64-slice computed tomography. Am J Cardiol. 2008;101(5):579–84.

    Article  PubMed  Google Scholar 

  78. Burgstahler C, Reimann A, Beck T, et al. Influence of a lipid-lowering therapy on calcified and noncalcified coronary plaques monitored by multislice detector computed tomography: results of the New Age II Pilot Study. Invest Radiol. 2007;42(3):189–95.

    Article  PubMed  CAS  Google Scholar 

  79. Nakazawa G, Tanabe K, Onuma Y. Efficacy of culprit plaque assessment by 64-slice multidetector computed tomography to predict transient no reflow phenomenon during percutaneous coronary intervention. Am Heart J. 2008;155:1150–7.

    Article  PubMed  Google Scholar 

  80. Taylor AJ, Cerqueira M, Hodgson JM. ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography. J Am Coll Cardiol. 2010;56(22):1864–94.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd C. Villines M.D., FACC, FSCCT .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Villines, T.C., Rinehart, S., Qian, Z., Voros, S. (2013). Coronary Atherosclerosis Imaging by Coronary CT Angiography. In: Taylor, A., Villines, T. (eds) Atherosclerosis: Clinical Perspectives Through Imaging. Springer, London. https://doi.org/10.1007/978-1-4471-4288-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4288-1_9

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4287-4

  • Online ISBN: 978-1-4471-4288-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics