Skip to main content

Coordination Control of Distributed Discrete-Event Systems

  • Chapter

Part of the Lecture Notes in Control and Information Sciences book series (LNCIS,volume 433)

Abstract

A coordinated distributed discrete-event system consists of a coordinator and two or more subsystems. The coordinator directly influences the dynamics of the other subsystems but the subsystems do not directly influence each other. Coordination control of a coordinated distributed discrete-event system is to synthesize supervisors for the coordinator and for each of the subsystems so that the closed-loop system meets the specification. A characterization of the existence of such supervisors is presented as well as the solution to the problem of supremal supervision.

Keywords

  • Minimal Generator
  • Supervisory Control
  • Observer Property
  • Hierarchical Control
  • Conditional Controllability

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4471-4276-8_8
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-1-4471-4276-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boutin, O., van Schuppen, J.H.: On the control of the paint factory scale model. In: CWI MAC-1103, Amsterdam, The Netherlands (2011), http://oai.cwi.nl/oai/asset/18598/18598D.pdf

  2. Brandt, R.D., Garg, V., Kumar, R., Lin, F., Marcus, S.I., Wonham, W.M.: Formulas for calculating supremal controllable and normal sublanguages. Systems Control Letters 15(2), 111–117 (1990)

    MathSciNet  MATH  CrossRef  Google Scholar 

  3. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems, 2nd edn. Springer (2008)

    Google Scholar 

  4. Feng, L.: Computationally Efficient Supervisor Design for Discrete-Event Systems. PhD Thesis. University of Toronto, Canada (2007), http://www.kth.se/polopoly_fs/1.24026thesis.zip

  5. Feng, L., Wonham, W.M.: On the computation of natural observers in discrete-event systems. Discrete Event Dynamic Systems 20(1), 63–102 (2010)

    MathSciNet  MATH  CrossRef  Google Scholar 

  6. Gaudin, B., Marchand, H.: Supervisory control of product and hierarchical discrete event systems. European Journal of Control 10(2), 131–145 (2004)

    MathSciNet  CrossRef  Google Scholar 

  7. Kempker, P.L., Ran, A.C.M., van Schuppen, J.H.: Construction of a coordinator for coordinated linear systems. In: Proc. of Euroepan Control Conference, Budapest, Hungary (2009)

    Google Scholar 

  8. Komenda, J., Masopust, T., van Schuppen, J.H.: Coordinated control of discrete event systems with nonprefix-closed languages. In: Proc. of IFAC World Congress 2011, Milano, Italy (2011)

    Google Scholar 

  9. Komenda, J., Masopust, T., van Schuppen, J.H.: On conditional decomposability. CoRR, abs/1201.1733 (2012), http://arxiv.org/abs/1201.1733

  10. Komenda, J., Masopust, T., van Schuppen, J.H.: Supervisory control synthesis of discrete-event systems using a Coordination Scheme. Automatica 48(2), 247–254 (2011)

    CrossRef  Google Scholar 

  11. Komenda, J., Masopust, T., van Schuppen, J.H.: Synthesis of controllable and normal sublanguages for discrete-event systems using a coordinator. Systems and Control Letters 60(7), 492–502 (2011)

    MathSciNet  MATH  CrossRef  Google Scholar 

  12. Komenda, J., van Schuppen, J.H.: Control of discrete-event systems with modular or distributed structure. Theoretical Computer Sciences 388(3), 199–226 (2007)

    MATH  CrossRef  Google Scholar 

  13. Komenda, J., van Schuppen, J.H.: Modular control of discrete-event systems with coalgebra. IEEE Transactions on Automatic Control 53(2), 447–460 (2008)

    CrossRef  Google Scholar 

  14. Komenda, J., van Schuppen, J.H., Gaudin, B., Marchand, H.: Supervisory control of modular systems with global specification languages. Automatica 44(4), 1127–1134 (2008)

    MathSciNet  CrossRef  Google Scholar 

  15. Kumar, R., Garg, V., Marcus, S.I.: On controllability and normality of discrete event dynamical systems. Systems and Control Letters 17(3), 157–168 (1991)

    MathSciNet  MATH  CrossRef  Google Scholar 

  16. Leduc, R.J., Pengcheng, D., Raoguang, S.: Synthesis method for hierarchical interface-based supervisory control. IEEE Transactions on Automatic Control 54(7), 1548–1560 (2009)

    CrossRef  Google Scholar 

  17. Moor, T., et al.: Libfaudes–Discrete Event Systems Library (2006), http://www.rt.eei.uni-erlangen.de/FGdes/faudes/index.html

  18. Pena, P.N., Cury, J.E.R., Lafortune, S.: Polynomial-time verification of the observer property in abstractions. In: Proc. American Control Conference, Seattle, USA (2008)

    Google Scholar 

  19. Polycarpou, M.M., Panayiotou, C., Lambrou, T., van Schuppen, J.H.: CON4COORD WP3 Aerial Vehicles–Final Report (2011), http://www.c4c-project.eu

  20. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event processes. SIAM Journal of Control Optimization 25(1), 206–230 (1987)

    MathSciNet  MATH  CrossRef  Google Scholar 

  21. Ramadge, P.J., Wonham, W.M.: The control of discrete event systems. Proceedings of the IEEE 77(1), 81–98 (1989)

    CrossRef  Google Scholar 

  22. Ran, A.C.M., van Schuppen, J.H.: Control for coordination of linear systems. In: Proc. of Mathematical Theory of Networks and Systems, Blacksburg, USA (2008)

    Google Scholar 

  23. Schmidt, K., Breindl, C.: Maximally permissive hierarchical control of decentralized discrete event systems. IEEE Transactions on Automatic Control 56(4), 723–734 (2011)

    MathSciNet  CrossRef  Google Scholar 

  24. Schmidt, K., Moor, T., Perk, S.: Nonblocking hierarchical control of decentralized discrete event systems. IEEE Transactions on Automatic Control 53(10), 2252–2265 (2008)

    MathSciNet  CrossRef  Google Scholar 

  25. Wong, K.C., Wonham, W.M.: Hierarchical control of discrete-event systems. Discrete Event Dynamic Systems 6(3), 241–273 (1996)

    MathSciNet  MATH  CrossRef  Google Scholar 

  26. Wong, K.C.: On the complexity of projections of discrete-event systems. In: Proc. 4th Workshop on Discrete Event Systems, Cagliari, Italy (1998)

    Google Scholar 

  27. Wonham, W.M.: Supervisory control of discrete-event systems. Lecture Notes. University of Toronto (2011), http://www.control.utoronto.ca/DES

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Komenda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Komenda, J., Masopust, T., van Schuppen, J.H. (2013). Coordination Control of Distributed Discrete-Event Systems. In: Seatzu, C., Silva, M., van Schuppen, J. (eds) Control of Discrete-Event Systems. Lecture Notes in Control and Information Sciences, vol 433. Springer, London. https://doi.org/10.1007/978-1-4471-4276-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4276-8_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4275-1

  • Online ISBN: 978-1-4471-4276-8

  • eBook Packages: EngineeringEngineering (R0)