Advertisement

Gout pp 291-385 | Cite as

Management of Hyperuricemia and Gout

  • David S. Newcombe
Chapter

Abstract

These anti-inflammatory drugs that are used to treat acute gout are discussed in detail. Their administration, pharmacology, and toxicity are considered. Then, urate-lowering therapy is thoroughly described, again considering the administration, pharmacology, and toxicity of these agents. The widespread mismanagement of gout in general and even specialty medical practice makes this information important for patients and their physicians.

References

  1. 1.
    Rosenfeld JB. Effect of long-term allopurinol on serial GFR in normotensive and hypertensive hyperuricemic subjects. Adv Exp Med Biol. 1974;41B:581.Google Scholar
  2. 2.
    Steele TH, Oppenheimer S. Factors affecting urate excretion following diuretic administration in man. Am J Med. 1969;47:564.PubMedGoogle Scholar
  3. 3.
    Steele TH. Evidence of altered renal urate reabsorption during changes in volume of the extracellular fluid. J Lab Clin Med. 1969;74:288.PubMedGoogle Scholar
  4. 4.
    Schirmeister J, Man NK, Hallaner W. Study of renal and extrarenal factors involved in hyperuricemia induced by furosemide. In: Peters G, Roch-Ramal F, editors. Progress in nephrology. New York: Springer; 1969. p. 59.Google Scholar
  5. 5.
    Schultz G, Gesaft G, Losert W, et al. Biochemische grundlagen der Diazoxid-hyperglykamie. Naunyn Schmeidebergs Arch Pharmacol Exp Pathol. 1966;253-A:372.Google Scholar
  6. 6.
    Kuzell WC, Schaffarzick RW, Naugler WE, et al. Some observations on 520 gouty patients. J Chronic Dis. 1955;2:645.PubMedGoogle Scholar
  7. 7.
    Barlow KA, Beilin LJ. Renal disease and primary gout. Q J Med. 1968;37:79.PubMedGoogle Scholar
  8. 8.
    Rapado A. Relationship between gout and arterial hypertension. In: Sperling O, DeVries A, Wyngaarden JB, editors. Purine metabolism in man, vol. 41B. New York: Plenum Press; 1974. p. 451.Google Scholar
  9. 9.
    Waller PC, Ramsay LE. Predicting gout in diuretic-treated hypertensive patients. J Hum Hypertens. 1989;3:457.PubMedGoogle Scholar
  10. 10.
    Laut A. Diuretics: clinical pharmacology and therapeutic use (part II). Drugs. 1985;29:162.Google Scholar
  11. 11.
    Steele TH. Diuretic-induced hyperuricemia. Clin Rheum Dis. 1950;2:37.Google Scholar
  12. 12.
    Langford HS, Blaufox MD, Borhani NO, et al. Is thiazide-produced uric acid elevation harmful? Analysis of data from the Hypertension Detection and Follow-up Program. Arch Intern Med. 1987;147:645.PubMedGoogle Scholar
  13. 13.
    Klemperer F, Bauer W. Influence of aspirin on urate excretion. J Clin Invest. 1944;23:950.Google Scholar
  14. 14.
    Crone C, Lassen W. The effect of salicylic acid and acetylsalicylic acid on uric acid excretion and plasma uric acid concentration in normal human subjects. Acta Pharmacol. 1955;11:355.Google Scholar
  15. 15.
    Yu T-F, Gutman AB. Paradoxical retention of uric acid by uricosuric drugs in low dosage. Proc Soc Exp Biol Med. 1955;90:542.PubMedGoogle Scholar
  16. 16.
    Gutman AB, Yu T-F. Benemid (p-[di-N-propylsulfamyl] benzoic acid) as a uricosuric agent in chronic gouty arthritis. Trans Assoc Am Physicians. 1951;64:279.PubMedGoogle Scholar
  17. 17.
    Steele TH, Bonar G. Origins of uricosuric response. J Clin Invest. 1973;52:1368.PubMedGoogle Scholar
  18. 18.
    Shapiro M, Hyde L. Hyperuricemia due to pyrazinamide. Am J Med. 1957;23:596.PubMedGoogle Scholar
  19. 19.
    Wood RHN. Salicylates. Bull Rheum Dis. 1963;13:297.PubMedGoogle Scholar
  20. 20.
    Gershon SL, Fox IH. Pharmacologic effects of nicotinic acid on human purine metabolism. J Lab Clin Med. 1974;84:179.PubMedGoogle Scholar
  21. 21.
    Postlewaite AE, Kelley WN. Studies on the mechanism of ethambutol-induced hyperuricemia. Arthritis Rheum. 1972;15:403.Google Scholar
  22. 22.
    Elion GB, Kovensky A, Hitchings GH, et al. Metabolic studies of allopurinol, an inhibitor of xanthine oxidase. Biochem Pharmacol. 1966;15:863.PubMedGoogle Scholar
  23. 23.
    Elion GB, Yu T-F, Gutman AB, Hitchings GH. Renal clearance of oxypurinol, the chief metabolite of allopurinol. Am J Med. 1968;45:69.PubMedGoogle Scholar
  24. 24.
    Elion GB. Allopurinol and other inhibitors of urate synthesis. In: Kelley WN, Weiner IM, editors. Uric acid. New York: Springer; 1978. p. 485–514.Google Scholar
  25. 25.
    Maisey DN, Brown RD. Acetazolamide and symptomatic metabolic acidosis in mild renal failure. Br Med J. 1981;283:1527.Google Scholar
  26. 26.
    Nolph KD, Sarkin MI. Peritoneal dialysis in acute renal failure. In: Brenner BM, Lazarus JM, editors. Acute renal failure. New York: Churchill Livingstone; 1988. p. 809–38.Google Scholar
  27. 27.
    Rundles RW. The development of allopurinol. Arch Intern Med. 1985;145:1492.PubMedGoogle Scholar
  28. 28.
    Zemer D, Revach M, Pras M. A controlled trial of colchicine in preventing attacks of familial Mediterranean fever. N Engl J Med. 1976;291:832.Google Scholar
  29. 29.
    Taborn J, Bole GG, Thompson GR. Colchicine suppression of local and systemic inflammation due to calcinosis universalis in chronic dermatomyositis. Ann Intern Med. 1979;89:648.Google Scholar
  30. 30.
    Tabatai MR, Cummings NA. Intravenous colchicine in the treatment of acute pseudogout. Arthritis Rheum. 1980;23:370.Google Scholar
  31. 31.
    Ravid M, Shapira J, Kedar I, Feigl D. Regression of amyloidosis secondary to granulomatous ileitis following surgical resection and colchicine administration. Acta Hepatogastroenterol. 1979;26:513.Google Scholar
  32. 32.
    Ravid M, Robson M, Kedar I. Prolonged colchicine treatment in four patients with amyloidosis. Ann Intern Med. 1977;87:568.PubMedGoogle Scholar
  33. 33.
    Mizushima Y, Matumira NS, Mosi M, et al. Colchicine in Behcet’s disease. Lancet. 1977;2:1037.PubMedGoogle Scholar
  34. 34.
    Miyachi Y, Taniguchi S, Ozaki M, Horio T. Colchicine in the treatment of cutaneous manifestations of Behcet’s disease. Br J Dermatol. 1981;104:67.PubMedGoogle Scholar
  35. 35.
    Meed SD, Spilberg I. Successful use of colchicine in acute polyarticular pseudogout. J Rheumatol. 1981;8:689.PubMedGoogle Scholar
  36. 36.
    Kaplan H. Further experience with colchicine in the treatment of sarcoid arthritis. N Engl J Med. 1963;268:761.PubMedGoogle Scholar
  37. 37.
    Ainarella CA, Wolff SM, Goldfinger SE. Colchicine therapy for familial Mediterranean fever. A double-blind study. N Engl J Med. 1976;291:934.Google Scholar
  38. 38.
    Aktulga E, Altac M, Muftinoglu A, et al. A double-blind study of colchicine in Behcet’s disease. Haematologica. 1980;65:399.PubMedGoogle Scholar
  39. 39.
    Hazen PG, Michel B. Management of necrotizing vasculitis with colchicine. Improvement in patients with cutaneous lesions and Behcet’s syndrome. Arch Dermatol. 1979;115:1303.PubMedGoogle Scholar
  40. 40.
    Terkeltaub RA, Furst DE, Bennett K, et al. High versus low dosing of oral Colchicine for early acute gout flare. Arthritis Rheum. 2010;62:1060–8.PubMedGoogle Scholar
  41. 41.
    Tse RL, Phelps P. Polymorphonuclear leukocyte motility in vitro. V. Release of chemotactic activity following phagocytosis of calcium pyrophosphate crystals, diamond dust, and urate crystals. J Lab Clin Med. 1970;76:403.PubMedGoogle Scholar
  42. 42.
    Trung PH. Chemotaxis of human leukocytes. II. Effects of lectins, colchicine, cytochalasin B, cyclic nucleotides and immuno-stimulatory products. Biomedicine. 1977;30:121.Google Scholar
  43. 43.
    Phelps P, McCarty Jr DJ. Crystal-induced arthritis. Postgrad Med. 1969;45:84.Google Scholar
  44. 44.
    Maleich HL, Root RK, Gallin JI. Structural analysis of human neutrophil migration. Centriole, microtubule and microfilament orientation and function during chemotaxis. J Cell Biol. 1977;75:666.Google Scholar
  45. 45.
    Roberge CJ, Gaudry M, de Medicis R, et al. Crystal-induced neutrophil activation. IV. Specific inhibition of tyrosine phosphorylation by colchicine. J Clin Invest. 1993;92:1722.PubMedGoogle Scholar
  46. 46.
    Kitagawa S, Takaku F. Effect of microtubule disrupting agents on superoxide production in human polymorphonuclear leukocytes. Biochim Biophys Acta. 1982;719:589.PubMedGoogle Scholar
  47. 47.
    Okamura N, Hanakura K, Kodakarai M, Ishibashi S. Cooperation of cytochalasin D and anti-microtubular agents in stimulating superoxide anion production in polymorphonuclear leukocytes. J Biochem (Tokyo). 1980;88:139.Google Scholar
  48. 48.
    Phelps P. Polymorphonuclear leukocyte motility in vitro. II. Stimulating effect on monosodium urate crystals and urate in solution; partial inhibition by colchicine and indomethacin. Arthritis Rheum. 1969;12:189.PubMedGoogle Scholar
  49. 49.
    Spilberg I, Gallacher A, Mandell B, Rosenberg D. A mechanism for action of non-steroidal anti-inflammatory agents in calcium pyrophosphate dehydrate (CPPD) crystal-induced arthritis. Agents Actions. 1977;7:153.PubMedGoogle Scholar
  50. 50.
    Zurier RB, Hoffstein S, Weissman G. Mechanism of lysosomal enzyme release from human leukocytes. I. Effect of cyclic nucleotides and colchicine. J Cell Biol. 1973;58:27.PubMedGoogle Scholar
  51. 51.
    Wallace SL, Ertel NH. Pharmacology of drugs used in the treatment of acute gout. In: Kelley WN, Weiner IM, editors. Uric acid. New York: Springer; 1978. p. 525–40.Google Scholar
  52. 52.
    Wallace SL. Colchicine. Semin Arthritis Rheum. 1974;3:369.PubMedGoogle Scholar
  53. 53.
    Borisy CG, Taylor EW. The mechanism of action of colchicine: binding of colchicine-3H to cellular protein. J Cell Biol. 1967;34:525.PubMedGoogle Scholar
  54. 54.
    Schelanski MC, Taylor EW. Isolation of protein subunit from microtubules. J Cell Biol. 1967;34:549.Google Scholar
  55. 55.
    Wright DG, Malawista SE. The mobilization and extracellular release of granular enzymes from human leukocytes during phagocytosis. Arthritis Rheum. 1971;14:425.Google Scholar
  56. 56.
    Spilberg I, Mandell B, Mehta J, et al. Mechanism of colchicine action in acute urate crystal-induced arthritis. J Clin Invest. 1979;64:775.PubMedGoogle Scholar
  57. 57.
    Serhan CN, Lundberg U, Weissman G, Samuelsson B. Formation of leukotrienes and hydroxyl acids by human neutrophils and platelets exposed to monosodium urate. Prostaglandins. 1984;27:563.PubMedGoogle Scholar
  58. 58.
    Kastner DL, Aksentijevich I, Goldbach-Mansky R. Autoinflammatory disease reloaded: a clinical perspective. Cell. 2010;140:784–90.PubMedGoogle Scholar
  59. 59.
    Poubelle PE, de Medicis R, Naccache PH. Monosodium urate and calcium pyrophosphate crystals differentially activate the excitation-coupling sequence of human neutrophils. Biochem Biophys Res Commun. 1987;149:649.PubMedGoogle Scholar
  60. 60.
    Onello E, Traynor-Kaplan A, Sklar L, Terkeltaub R. Mechanism of neutrophil activation by an unopsonized inflammatory particulate. Monosodium urate crystals induce pertussis toxin-insensitive hydrolysis of phosphatidylinositol 4,5-bisphosphate. J Immunol. 1991;146:4289.PubMedGoogle Scholar
  61. 61.
    Naccache PH, Bourgoin S, Plante E, et al. Crystal-induced neutrophil activation. II. Evidence for the activation of a phosphatidylcholine-specific phospholipase D. Arthritis Rheum. 1993;36:117.PubMedGoogle Scholar
  62. 62.
    Gaudry M, Roberge CJ, de Medicis R, et al. Crystal-induced neutrophil activation. III. Inflammatory microcrystals induce a distinct pattern of tyrosine phosphorylation in human neutrophils. J Clin Invest. 1993;91:1649.PubMedGoogle Scholar
  63. 63.
    Ertel NH, Wallace SL. Measurement of colchicine in urine and peripheral leukocytes. Clin Res. 1971;19:348.Google Scholar
  64. 64.
    Wallace SL, Omokoku B, Ertel NH. Colchicine plasma levels: Implications as to pharmacology and mechanism of action. Am J Med. 1970;48:443.PubMedGoogle Scholar
  65. 65.
    Keibman J, Haines KA, Rich AM, et al. Colchicine inhibits ionophore-induced formation of leukotriene B4 by human neutrophils: the role of microtubules. J Immunol. 1986;136:1027.Google Scholar
  66. 66.
    Rich AM, Hoffstein ST. Inverse correlation between neutrophil microtubule numbers and enhanced random migration. J Cell Sci. 1981;48:181.PubMedGoogle Scholar
  67. 67.
    Oliver JM, Albertini DF, Berlin RD. Effects of glutathione-oxidizing agents on microtubule assembly and microtubule-dependent surface properties of human neutrophils. J Cell Biol. 1976;71:921.PubMedGoogle Scholar
  68. 68.
    Malawista SE, Oliver JM, Rudolf SA. Microtubules and cyclic AMP in human leukocytes: on the order of things. J Cell Biol. 1978;77:881.PubMedGoogle Scholar
  69. 69.
    Olmstead SL, Borisy GG. Microtubules. Annu Rev Biochem. 1973;42:507.Google Scholar
  70. 70.
    Wallace SL. Trimethylcolchicinic acid in the treatment of acute gout. Ann Intern Med. 1961;54:274.PubMedGoogle Scholar
  71. 71.
    Webb DJ, Chodos RB, Mahar CQ, Faloon WW. Mechanism of vitamin B12 malabsorption in patients receiving colchicine. N Engl J Med. 1980;279:845.Google Scholar
  72. 72.
    Rubulis A, Rubert M, Faloon WW. Cholesterol lowering, fecal bile acid and sterol changes during neomycin and colchicine. J Clin Nutr. 1970;23:1251.Google Scholar
  73. 73.
    Gillespie E, Levine RJ, Malawista SE. Histamine release from rat peritoneal mast cells: Inhibition by colchicine and potentiation by deuterium oxide. J Pharmacol Exp Ther. 1968;164:158.PubMedGoogle Scholar
  74. 74.
    Bhisey AN, Freed JH. Ameboid movement induced in cultured macrophages by colchicine and vinblastine. Exp Cell Res. 1971;64:419.PubMedGoogle Scholar
  75. 75.
    Harris ED, Krane SM. Effect of colchicine on collagenase in cultures of rheumatoid synovium. Arthritis Rheum. 1971;14:669.PubMedGoogle Scholar
  76. 76.
    Robinson DR, Smith H, Levine L. Prostaglandin synthesis by human synovial cultures and its stimulation by colchicine. Arthritis Rheum. 1973;16:129.Google Scholar
  77. 77.
    Walaszek EJ, Kocsis JJ, Leroy GV, Geiling EMK. Studies on the excretion of radioactive colchicine. Arch Int Pharmacodyn Ther. 1960;125:371.Google Scholar
  78. 78.
    Smallwood JI, Malawista SE. Colchicine, crystals, and neutrophil tyrosine phosphorylation. J Clin Invest. 1993;92:1602.PubMedGoogle Scholar
  79. 79.
    Gaultier M, Kaufer A, Bismuth C, et al. Donnees actuelles sur l’intoxication aigue par la colchicine. Ann Med Interne. 1969;120:605.Google Scholar
  80. 80.
    Bruns BJ. Colchicine toxicity. Australas Ann Med. 1969;17:341.Google Scholar
  81. 81.
    Carr AA. Colchicine toxicity. Arch Intern Med. 1965;115:29.PubMedGoogle Scholar
  82. 82.
    Kontos HA. Myopathy associated with chronic colchicine toxicity. N Engl J Med. 1962;266:38.PubMedGoogle Scholar
  83. 83.
    Roberts WN, Liang MH, Stern SH. Colchicine in acute gout. Reassessment of risks and benefits. JAMA. 1987;257:1920.PubMedGoogle Scholar
  84. 84.
    Malawista SE. Colchicine: a common mechanism for its anti-inflammatory and anti-meiotic effects. Arthritis Rheum. 1968;11:191.PubMedGoogle Scholar
  85. 85.
    Auerbach R, Orentrick N. Alopecia and ichthyosis secondary to allopurinol. Arch Dermatol. 1968;98:104.PubMedGoogle Scholar
  86. 86.
    Riggs JE, Schochet SS, Gutmann L, et al. Chronic human colchicine neuropathy and myopathy. Arch Neurol. 1986;43:521.PubMedGoogle Scholar
  87. 87.
    Anonymous. Colchicine myoneuropathy. Lancet. 1987;1:668.Google Scholar
  88. 88.
    Kuncl RW, Duncan G, Watson D, et al. Colchicine myopathy and neuropathy. N Engl J Med. 1987;316:1562.PubMedGoogle Scholar
  89. 89.
    Rieger EH, Halasz NA, Wahlstrom HE. Colchicine neuromyopathy after renal transplantation. Transplantation. 1990;49:1196.PubMedGoogle Scholar
  90. 90.
    Kirchin VS, Southgate HJ, Beard RC. Colchicine: an unusual cause of a reversible azoospermia. BJU Int. 1999;83:156.PubMedGoogle Scholar
  91. 91.
    Wyngaarden JB, Kelley WN. Gout and hyperuricemia. New York: Grune & Stratton; 1976.Google Scholar
  92. 92.
    Smith WL, Garavito RM, DeWitt DL. Prostaglandin endoperoxides H synthases (cyclooxygenases)-1 and −2. J Biol Chem. 1996;271:33157.PubMedGoogle Scholar
  93. 93.
    Hla T, Neilson K. Human cyclooxygenase-2 cDNA. Proc Natl Acad Sci USA. 1992;89:7384.PubMedGoogle Scholar
  94. 94.
    O’Banion MK, Winn VD, Young DA. cDNA cloning and functional activity of a glucocorticoid regulated inflammatory cyclooxygenase. Proc Natl Acad Sci USA. 1992;89:4888.PubMedGoogle Scholar
  95. 95.
    Jones DA, Carlton DP, McIntyre TM, et al. Molecular cloning of human prostaglandin endoperoxide synthase type II and demonstration of expression in response to cytokines. J Biol Chem. 1993;268:9049.PubMedGoogle Scholar
  96. 96.
    Percival MD, Ouillet M, Vincent CJ, et al. Purification and characterization of recombinant cyclooxygenase-2. Arch Biochem Biophys. 1994;315:111.PubMedGoogle Scholar
  97. 97.
    O’Neill G, Ford-Hutchinson A. Expression of mRNA for cyclooxygenase-1 and cyclooxygenase-2 in human tissues. FEBS Lett. 1992;330:156.Google Scholar
  98. 98.
    O’Sullivan MG, Chilton FH, Huggins EMJ, et al. Lipopolysaccharide priming of alveolar macrophages for enhanced synthesis of prostanoids involves induction of a novel prostaglandin H synthase. J Biol Chem. 1992;267:14547.PubMedGoogle Scholar
  99. 99.
    Sano H, Hla T, Maier JAM, et al. In vivo cyclooxygenase expression in synovial tissue of patients with rheumatoid arthritis and osteoarthritis and rats with adjuvant and streptococcal cell wall arthritis. J Clin Invest. 1992;89:97.PubMedGoogle Scholar
  100. 100.
    Crofford LJ, Wilder RL, Ristimaki AP, et al. Cyclooxygenase-1 and −2 expression in rheumatoid synovial tissues: effects of interleukin-1β. J Clin Invest. 1994;93:1095.PubMedGoogle Scholar
  101. 101.
    Smith WL, DeWitt DL. Prostaglandin endoperoxides H synthase-1 and −2. Adv Immunol. 1996;62:167.PubMedGoogle Scholar
  102. 102.
    Masferrer JL, Zweifel BS, Seibert K, et al. Endogenous glucocorticoids regulate an inducible cyclooxygenase enzyme. Proc Natl Acad Sci USA. 1992;89:3917.PubMedGoogle Scholar
  103. 103.
    Masferrer JL, Zweifel BS, Seibert K, et al. Selective inhibition of inducible cyclooxygenase 2 in vivo is anti-inflammatory and nonulcerogenic. Proc Natl Acad Sci USA. 1994;91:3228.PubMedGoogle Scholar
  104. 104.
    Langman MJS, Weil J, Wainwright P, et al. Risk of bleeding peptic ulcer associated with individual nonsteroidal anti-inflammatory drugs. Lancet. 1994;343:1075, 1302.PubMedGoogle Scholar
  105. 105.
    Murray MD, Brater DC. Renal toxicity of the nonsteroidal anti-inflammatory drugs. Annu Rev Pharmacol Toxicol. 1993;32:435.Google Scholar
  106. 106.
    Meade EA, Smith WL, DeWitt DL. Differential inhibition of prostaglandin endoperoxides synthase (cyclooxygenase) isozymes by aspirin and other nonsteroidal anti-inflammatory drugs. J Biol Chem. 1993;268:6610.PubMedGoogle Scholar
  107. 107.
    Mitchell JA, Akarasereenont P, Theimermann C, et al. Selectivity of nonsteroidal anti-inflammatory drugs as inhibitors of constitutive and inducible cyclooxygenases. Proc Natl Acad Sci USA. 1994;90:11693.Google Scholar
  108. 108.
    FitzGerald GA, Patrono C. The coxibs, selective inhibitors of cyclooxygenase-2. N Engl J Med. 2001;345:433–42.PubMedGoogle Scholar
  109. 109.
    Solomon EH, Glynn RJ, Rothman KJ, et al. Subgroup analyses to determine cardiovascular risk associated with nonsteroidal antiinflammatory drugs and coxibs in specific patient groups. Arthritis Rheum. 2008;59:1097–104.PubMedGoogle Scholar
  110. 110.
    Amer M, Bead VR, Bathon J, et al. Usse of nonsteroidal anti-inflammatory drugs in patients with cardiovascular disease. Cardiol Rev. 2010;18:204–12.PubMedGoogle Scholar
  111. 111.
    Karachalios GN, Donas G. Sulindac in the treatment of acute gouty arthritis. Int J Tissue React. 1982;4:297.PubMedGoogle Scholar
  112. 112.
    Schweitz MC, Nashel DJ, Alepa FP. Ibuprofen in the treatment of acute gouty arthritis. JAMA. 1978;289:34.Google Scholar
  113. 113.
    Wanasukapent S, Lestratenakul Y, Rubenstein HM. Effect of fenoprofen calcium on acute gout. Arthritis Rheum. 1976;19:933.Google Scholar
  114. 114.
    Wilkens RF, Case JB, Huix FJ. Treatment of acute gout with Naprosyn. J Clin Pharmacol. 1976;15:363.Google Scholar
  115. 115.
    Bluestone RH. Safety and efficacy of piroxicam in the treatment of gout. Am J Med. 1979;72(Suppl):66.Google Scholar
  116. 116.
    Tamisier JN. Ketoprofen. Clin Rheum Dis. 1979;5:381.Google Scholar
  117. 117.
    Petera P, Gainmayer K, Tausch G. Treatment of acute gout attacks with tolmetin. Wein Med Wochenschr. 1982;132:43.Google Scholar
  118. 118.
    Eberl R, Dunky A. Meclofenamate sodium in the treatment of acute gout. Arzneimittelforschung. 1983;33:641.PubMedGoogle Scholar
  119. 119.
    Brogen RN, Heil RC, Speight TM, Avery GS. Sulindac: a review of its pharmacological properties and therapeutic efficacy in rheumatic diseases. Drugs. 1978;16:97.Google Scholar
  120. 120.
    Duggan DE, Hare LE, Ditzler CA, et al. The disposition of sulindac. Clin Pharmacol Ther. 1977;21:326.PubMedGoogle Scholar
  121. 121.
    Pouliot M, James MJ, McColl SR, et al. Monosodium urate microcrystals induce cyclooxygenase-2 in human monocytes. Blood. 1998;91:1769.PubMedGoogle Scholar
  122. 122.
    Vance JR, Bakhle YS, Botting RM. Cyclooxygenase 1 and 2. Annu Rev Pharmacol Toxicol. 1998;38:97.Google Scholar
  123. 123.
    Breyer MD, Harris RC. Cyclooxygenase 2 and the kidney. Curr Opin Nephrol Hypertens. 2001;10:89.PubMedGoogle Scholar
  124. 124.
    Giercksky KE, Haglund U, Rask-Madsen J. Selective inhibitors of COX-2 – are they safe for the stomach? Scand J Gastroenterol. 2000;35:1121.PubMedGoogle Scholar
  125. 125.
    Emery P. Cyclooxygenase-2: a major therapeutic advance? Am J Med. 2001;110:42S.PubMedGoogle Scholar
  126. 126.
    Furst DE. Meloxicam: selective COX-2 inhibition in clinical practice. Semin Arthritis Rheum. 1997;26(Suppl):21.PubMedGoogle Scholar
  127. 127.
    Brzozowski T, Konturek PC, Konturek SJ, et al. Involvement of cyclooxygenase (COX)-2 products in acceleration of ulcer healing by gastrin and hepatocyte growth factor. J Physiol Pharmacol. 2000;51(Pt 1):751.PubMedGoogle Scholar
  128. 128.
    Buttgereit F, Burmester GR, Simon LS. Gastrointestinal toxic side effects on nonsteroidal anti-inflammatory drugs and cyclooxygenase-2-specific inhibitors. Am J Med. 2001;110(Suppl 3A):13S.PubMedGoogle Scholar
  129. 129.
    Everts B, Wahrborg P, Hedner T. COX-2-specific inhibitors – the emergence of a new class of analgesic and anti-inflammatory drugs. Clin Rheumatol. 2000;19:331.PubMedGoogle Scholar
  130. 130.
    Silverstein FE, Faich G, Goldstein JL, et al. Gastrointestinal toxicity with celecoxib vs nonsteroidal anti-inflammatory drugs for osteoarthritis and rheumatoid arthritis: the CLASS study: a randomized controlled trial. Celecoxib long-term arthritis safety study. JAMA. 2000;284:1247.PubMedGoogle Scholar
  131. 131.
    Williams RL, Upton RA, Buskin JN, Jones RM. Ketoprofen-aspirin interactions. Clin Pharmacol Ther. 1981;30:226.PubMedGoogle Scholar
  132. 132.
    Eberl R. Long-term experience with meclofenamate sodium. Arzeimittelforschung. 1983;33:667.Google Scholar
  133. 133.
    Marks JS. Steatorrhea complicating therapy with mefenamic acid. Br Med J. 1975;4:442.PubMedGoogle Scholar
  134. 134.
    Multz CV, Brobyn RD, Caldwell JR. Sodium meclofenamate (meclomen) vs. aspirin for rheumatoid arthritis. Curr Ther Res. 1978;23:572.Google Scholar
  135. 135.
    Preston SN. Safety of sodium meclofenamate (Meclomen). Curr Ther Res. 1978;23:S107.Google Scholar
  136. 136.
    Garg V, Jusko WJ. Effect of indomethacin on the pharmacokinetics and pharmacodynamics of prednisolone in rats. J Pharm Sci. 1994;83:747.PubMedGoogle Scholar
  137. 137.
    Kimberly RP, Bowden RE, Keiser HR, et al. Reduction of renal function by newer nonsteroidal anti-inflammatory drugs. Am J Med. 1978;64:804.PubMedGoogle Scholar
  138. 138.
    Miller KP, Lazar EJ, Fotino S. Severe hyperkalemia during piroxicam therapy. Arch Intern Med. 1984;144:2414.PubMedGoogle Scholar
  139. 139.
    Frais MA, Burgess ED, Mitchell LB. Piroxicam-induced renal failure and hyperkalemia. Ann Intern Med. 1983;99:129.PubMedGoogle Scholar
  140. 140.
    Mitnick PD, Klein Jr WJ. Piroxicam-induced renal disease. Arch Intern Med. 1984;144:63.PubMedGoogle Scholar
  141. 141.
    Chiolero A, Wurzner G, Burnier M. Selective inhibitors of type 2 cyclooxygenase: less renal effects than the classical nonsteroidal anti-inflammatory drugs on renal function? Nephrologie. 2000;21:425.PubMedGoogle Scholar
  142. 142.
    Brater DC. Effects of Nonsteroidal anti-inflammatory drugs on renal function: focus on cyclooxygenase-2-selective inhibition. Am J Med. 1999;107:655.Google Scholar
  143. 143.
    Stichtenoth DO, Frohlich JC. COX-2 and the kidneys. Curr Pharm Des. 2000;6:1737.PubMedGoogle Scholar
  144. 144.
    Swan SK, Rudy DW, Lassater KC, et al. Effect of cyclooxygenase-2 inhibition on renal function in elderly persons receiving a low-salt diet. A randomized, controlled trial. Ann Intern Med. 2000;133:1.PubMedGoogle Scholar
  145. 145.
    Whelton A, Schulman G, Wallemark C, et al. Effects of celecoxib and naproxen on renal function in the elderly. Arch Intern Med. 2000;160:1465.PubMedGoogle Scholar
  146. 146.
    Harris RC, Wang JL, Cheng HF. Prostaglandins in macula densa function. Kidney Int Suppl. 1998;67:S49.PubMedGoogle Scholar
  147. 147.
    Harding P, Sigmon DH, Alfie ME, et al. Cyclooxygenase-2 mediates increased renal renin content induced by low sodium diet. Hypertension. 1997;29:297.PubMedGoogle Scholar
  148. 148.
    Venturi CM, Isakson P, Needleman P. Nonsteroidal anti-inflammatory drug-induced renal failure: a brief overview of the role of cyclooxygenase isoforms. Curr Opin Nephrol Hypertens. 1998;7:79.Google Scholar
  149. 149.
    Traynor TR, Smart A, Briggs JP, Schnermann J. Inhibition of macula densa-stimulated renin secretion by pharmacological blockade of cyclooxygenase-2. Am J Physiol. 1999;277:F706.PubMedGoogle Scholar
  150. 150.
    Harding P, Curretero OA, Beierwaltes WH. Chronic cyclooxygenase-2 inhibition blunts low sodium-stimulated renin without changing renal haemodynamics. J Hypertens. 2000;18:1107.PubMedGoogle Scholar
  151. 151.
    Cheng HF, Wang JL, Zhang MZ, et al. Angiotensin II attenuates renal cortical cyclooxygenase-2 expression. J Clin Invest. 1999;103:953.PubMedGoogle Scholar
  152. 152.
    Karim A, Tolbert DS, Hunt TL, et al. Celecoxib, a specific COX-2 inhibitor, has no significant effect on methotrexate pharmacokinetics in patients with rheumatoid arthritis. J Rheumatol. 1999;26:2539.PubMedGoogle Scholar
  153. 153.
    Greenberg HE, Gottesdiener K, Huntington M, et al. A new cyclooxygenase-2 inhibitor, rofecoxib (VIOXX) did not alter the antiplatelet effects of low-dose aspirin in healthy volunteers. J Clin Pharmacol. 2000;40:1509.PubMedGoogle Scholar
  154. 154.
    Zhang MZ, Harris RC, McKanna JA. Regulation of cyclooxygenase-2 (COX-2) in rat renal cortex by adrenal glucocorticoids and mineralocorticoids. Proc Natl Acad Sci USA. 1999;96:15280.PubMedGoogle Scholar
  155. 155.
    Brazier J, Tamisier JN, Ambert D, Bannier A. Bioavailability of ketoprofen in man with and without concomitant administration of aluminum phosphate. Eur J Clin Pharmacol. 1981;19:305.PubMedGoogle Scholar
  156. 156.
    Segre EJ, Sevelius H, Varady J. Effects of antacids on naproxen absorption. N Engl J Med. 1974;291:582.PubMedGoogle Scholar
  157. 157.
    Slattery JT, Levy G. Effect of ibuprofen on protein-binding of warfarin in human serum. J Pharm Sci. 1977;66:1060.PubMedGoogle Scholar
  158. 158.
    Jain A, McMahon FG, Slattery JT, Levy G. Effect of naproxen on steady state serum concentration and anticoagulant activity of warfarin. Clin Pharmacol Ther. 1979;25:61.PubMedGoogle Scholar
  159. 159.
    Slattery JT, Levy G, Jain A, McMahon FG. Effect of naproxen on the kinetics of elimination and the anticoagulant activity of a single dose of warfarin. Clin Pharmacol Ther. 1979;25:51.PubMedGoogle Scholar
  160. 160.
    Yacobi A, Levy G. Effect of naproxen on protein binding of warfarin in human serum. Res Commun Chem Pathol Pharmacol. 1976;15:369.PubMedGoogle Scholar
  161. 161.
    Chaplin MD, Chu NI, Rice BG, Hama KM. Effect of repeated dosing with aspirin on plasma levels of naproxen (d-2-(6-methoxy-2-naphthyl) propionic acid) in rats. Proc West Pharmacol Soc. 1975;18:62.PubMedGoogle Scholar
  162. 162.
    Segre E, Chaplin M, Forchielli E, et al. Naproxen aspirin interactions in man. Clin Pharmacol Ther. 1974;15:374.PubMedGoogle Scholar
  163. 163.
    Stitt FW, Vaughan JH. Naproxen-aspirin drug interaction studied with response surface analysis. Clin Exp Pharmacol Physiol. 1977;4:216.Google Scholar
  164. 164.
    Grennan DM, Ferry DG, Ashworth ME, et al. The aspirin-ibuprofen interaction in rheumatoid arthritis. Br J Clin Pharmacol. 1979;8:497.PubMedGoogle Scholar
  165. 165.
    Rubin A, Rodda BE, Warwick P, et al. Interactions of aspirin with non-steroidal anti-inflammatory drugs in man. Arthritis Rheum. 1973;16:635.PubMedGoogle Scholar
  166. 166.
    Catella-Lawson F, Reilly MP, Kapoor SC, et al. Cyclooxygenase inhibitors and the anti-platelet effects of aspirin. N Engl J Med. 2001;345:1809–17.PubMedGoogle Scholar
  167. 167.
    Hayes AH. Therapeutic implications of drug interactions and acetaminophen and aspirin. Arch Intern Med. 1981;141:301.PubMedGoogle Scholar
  168. 168.
    Klotz U. Interaction of analgesics with other drugs. Am J Med. 1983;75:133.PubMedGoogle Scholar
  169. 169.
    Sinclair H, Gibson T. Interaction between probenecid and indomethacin. Br J Rheumatol. 1986;25:316.PubMedGoogle Scholar
  170. 170.
    Helleberg L. Clinical pharmacokinetics of indomethacin. Clin Pharmacokinet. 1981;6:245.PubMedGoogle Scholar
  171. 171.
    Skeith MD, Simkin P, Healey LA. The renal excretion of indomethacin and its inhibition by probenecid. Clin Pharmacol Ther. 1968;9:89.PubMedGoogle Scholar
  172. 172.
    Dunn MJ. Nonsteroidal anti-inflammatory drugs and renal function. Annu Rev Med. 1984;35:411.PubMedGoogle Scholar
  173. 173.
    Smith DE, Brater DC, Lin ET, Benet LZ. Attenuation of furosemide’s diuretic effect by indomethacin: pharmacokinetic evaluation. J Pharmacokinet Biopharm. 1978;7:265.Google Scholar
  174. 174.
    Miller KP, Lazar EJ, Fotino S. Severe hyperkalemia during piroxicam therapy. Arch Intern Med. 1984;144:2414.PubMedGoogle Scholar
  175. 175.
    Finding JW, Beckstrom D, Rawthorne L, et al. Indomethacin-induced hyperkalemia in three patients with gouty arthritis. JAMA. 1980;244:1127.Google Scholar
  176. 176.
    Galler M, Shapiro R, Schlondorff D. Reversible acute renal insufficiency and hyperkalemia following indomethacin therapy. JAMA. 1981;246:154.PubMedGoogle Scholar
  177. 177.
    Tan SY, Shapiro R, Franco R, et al. Indomethacin-induced prostaglandin inhibition and hyperkalemia. Ann Intern Med. 1979;90:783.PubMedGoogle Scholar
  178. 178.
    Niki G. Nonsteroidal analgesic and antiinflammatory drugs. Br Med J. 1983;287:39.Google Scholar
  179. 179.
    Mason RW, McQueen EG. Protein binding of indomethacin. Pharmacology. 1974;12:12.PubMedGoogle Scholar
  180. 180.
    Rae SA, Williams IA, English J, Baylis EM. Alteration of plasma prednisone levels by indomethacin and naproxen. J Clin Pharmacol. 1982;14:459.Google Scholar
  181. 181.
    Herschberg SN, Sierles FS. Indomethacin-induced lithium toxicity. Am Fam Physician. 1983;28:155.PubMedGoogle Scholar
  182. 182.
    van der Donk W, Tsai A, Kulmacz R. The cyclooxygenase reaction mechanism. Biochemistry. 2002;41:15451.PubMedGoogle Scholar
  183. 183.
    Salvetti A, Arzilli F, Pedriaelli R, et al. Interaction between oxprenolol and indomethacin on blood pressure in essential hypertensive patients. Eur J Clin Pharmacol. 1982;22:197.PubMedGoogle Scholar
  184. 184.
    Durao V, Prata MM, Goncalves LMP. Modification of antihypertensive effect of β-adrenergic-blocking agents by inhibition of endogenous prostaglandin synthesis. Lancet. 1978;2:1005.Google Scholar
  185. 185.
    Kwan KC, Breault GO, Davis RL, et al. Effects of concomitant aspirin administration on the pharmacokinetics of indomethacin in man. J Pharmacokinet Biopharm. 1978;6:451.PubMedGoogle Scholar
  186. 186.
    Furst DE, Block KA, Cassel S, et al. A controlled study of concurrent therapy with a non-acetylated salicylate and naproxen in rheumatoid arthritis. Arthritis Rheum. 1987;30:146.PubMedGoogle Scholar
  187. 187.
    Brooks PM, Walker JJ, Bell MA. Indomethacin aspirin interaction. A clinical appraisal. Br Med J. 1974;11:69.Google Scholar
  188. 188.
    Williams PL, Davies RO, Berman RS. Hydrochlorothiazide pharmacokinetics and pharmacologic effects: the influence of indomethacin. J Clin Pharmacol. 1982;22:32.PubMedGoogle Scholar
  189. 189.
    Henrich WL. Nephrotoxicity of the non-steroidal anti-inflammatory agents. In: Schrier R, Gottshalk C, editors. Diseases of the kidney. 5th ed. Boston: Little Brown; 1992. p. 1201–18.Google Scholar
  190. 190.
    McCarthy JT, Torres VE, Romero JC, et al. Acute intrinsic renal failure induced by indomethacin: roles of prostaglandin synthetase inhibition. Mayo Clin Proc. 1982;52:289.Google Scholar
  191. 191.
    Kimberly RP, Brandstetter RD. Exacerbation of phenylbutazone-related renal failure by indomethacin. Ann Intern Med. 1978;138:1711.Google Scholar
  192. 192.
    Brezin JH, Katz SM, Schwartz AB, et al. Reversible renal failure and nephrotic syndrome associated with nonsteroidal anti-inflammatory drugs. N Engl J Med. 1979;301:1271.PubMedGoogle Scholar
  193. 193.
    Favre L, Glasson P, Vallotton MB. Reversible acute renal failure from combined triamterene and indomethacin. A study of healthy subjects. Ann Intern Med. 1982;96:317.PubMedGoogle Scholar
  194. 194.
    Garella S, Matarese RA. Renal effects of prostaglandin and clinical adverse effects of nonsteroidal anti-inflammatory agents. Medicine. 1984;63:165.PubMedGoogle Scholar
  195. 195.
    Berheim JL, Rorzets Z. Indomethacin-induced renal failure. Ann Intern Med. 1979;91:792.Google Scholar
  196. 196.
    Galler M, Folkert VW, Schlondorf D. Reversible acute renal insufficiency and hyperkalemia following indomethacin therapy. JAMA. 1981;246:154.PubMedGoogle Scholar
  197. 197.
    Whelton A, Stout RL, Spilman PS, et al. Renal effects of ibuprofen, piroxicam, and sulindac in patients with asymptomatic renal failure. A prospective, randomized crossover comparison. Ann Intern Med. 1990;112:568.PubMedGoogle Scholar
  198. 198.
    Gurwitz JH, Avorn J, Ross-Deghan D, et al. Nonsteroidal anti-inflammatory drug-associated azotemia in the very old. JAMA. 1990;264:471.PubMedGoogle Scholar
  199. 199.
    Simon LS, Basch CM, Young DY, et al. Effects of naproxen on renal function in older patients with mild to moderate renal dysfunction. Br J Rheumatol. 1992;31:163.PubMedGoogle Scholar
  200. 200.
    Bunning RD, Barth WF. Sulindac: a potentially renal-sparing nonsteroidal anti-inflammatory drug. JAMA. 1982;248:2864.PubMedGoogle Scholar
  201. 201.
    Brater DC, Anderson S, Baird B, Campbell WB. Effects of ibuprofen, naproxen, and sulindac on prostaglandins in men. Kidney Int. 1985;27:66.PubMedGoogle Scholar
  202. 202.
    Miller MJS, Bednar MM, McGiff JC. Renal metabolism of sulindac: functional implications. J Pharmacol Exp Ther. 1984;231:449.PubMedGoogle Scholar
  203. 203.
    Eriksson L-O, Sturfelt G, Thysell H, et al. Effects of sulindac on prostaglandin excretion in patients with impaired renal function and rheumatoid arthritis. Am J Med. 1990;89:313.PubMedGoogle Scholar
  204. 204.
    Daskalopoulos G, Kronberg I, Katkov W, et al. Sulindac and indomethacin suppresses the diuretic action of furosemide in patients with cirrhosis and ascites: evidence that sulindac affects renal prostaglandins. Am J Kidney Dis. 1985;6:217.PubMedGoogle Scholar
  205. 205.
    Klassen DK, Stout RL, Spilman PS, et al. Sulindac kinetics and effects on renal function and prostaglandin excretion in renal insufficiency. J Clin Pharmacol. 1989;29:1037.PubMedGoogle Scholar
  206. 206.
    Dixey JJ, Noormohamed FH, Lant AF. The effects of naproxen and sulindac on renal function and their interaction with hydrochlorothiazide and piretanide in man. Br J Clin Pharmacol. 1987;23:55.PubMedGoogle Scholar
  207. 207.
    Swanson CP, Griffiths P. Acute and chronic effects of sulindac on renal function in chronic renal disease. Clin Pharmacol Ther. 1985;37:298.Google Scholar
  208. 208.
    Quintero E, Gines P, Arroyo V. Sulindac reduces the urinary excretion of prostaglandins and impairs renal function in cirrhosis and ascites. Nephron. 1986;42:298.PubMedGoogle Scholar
  209. 209.
    Cibattoni G, Cinotti GA, Pierucci A. Effects of sulindac and ibuprofen in patients with chronic glomerular disease: evidence for the dependence of renal function on prostacyclin. N Engl J Med. 1984;310:279.Google Scholar
  210. 210.
    Laffi G, Daskalopoulos G, Kronberg I, et al. Effects of sulindac and ibuprofen in patients with cirrhosis and ascites. An explanation for the renal-sparing effect of sulindac. Gastroenterology. 1986;90:182.PubMedGoogle Scholar
  211. 211.
    Zipser RD, Hoefs JC, Speckart PE, et al. Prostaglandins: modulators of renal function and pressor resistance in chronic liver disease. J Clin Endocrinol Metab. 1979;48:895.PubMedGoogle Scholar
  212. 212.
    Schlondorff D. Renal complications of nonsteroidal anti-inflammatory drugs. Kidney Int. 1993;44:643.PubMedGoogle Scholar
  213. 213.
    Corelli RL, Gericke KR. Renal insufficiency associated with intramuscular administration of ketorolac tromethamine. Ann Pharmacother. 1993;27:1055.PubMedGoogle Scholar
  214. 214.
    Pearce CJ, Gonzalez FM, Wallin JD. Renal failure and hyperkalemia associated with ketorolac tromethamine. Arch Intern Med. 1993;153:1000.PubMedGoogle Scholar
  215. 215.
    Feldman HI, Kinman JL, Berlin JA, et al. Parental ketorolac: the risk for acute renal failure. Ann Intern Med. 1997;126:193.PubMedGoogle Scholar
  216. 216.
    Lourie SH, Denman SJ, Schroeder ET. Association of renal papillary necrosis and ankylosing spondylitis. Arthritis Rheum. 1977;20:917.PubMedGoogle Scholar
  217. 217.
    Atta MG, Whelton A. Acute renal papillary necrosis induced by ibuprofen. Am J Ther. 1997;4:55.PubMedGoogle Scholar
  218. 218.
    Morales A, Steyn J. Papillary necrosis following phenylbutazone ingestion. Arch Surg. 1971;103:420.PubMedGoogle Scholar
  219. 219.
    Abraham PA, Keane WF. Glomerular and interstitial disease induced by nonsteroidal anti-inflammatory drugs. Am J Nephrol. 1984;4:1.PubMedGoogle Scholar
  220. 220.
    Gokal R, Matthews DR. Renal papillary necrosis after aspirin and alclofenac. Br Med J. 1977;2:1517.PubMedGoogle Scholar
  221. 221.
    Segasothy M, Samad SA, Zulfiquar A, Bennett WM. Renal dysfunction and renal papillary necrosis with long-term use of NSAIDS as a sole or predominant analgesic: a new form of analgesic nephropathy. Am J Soc Nephrol. 1993;4:259.Google Scholar
  222. 222.
    Segasothy M, Chin GL, Sia KK, et al. Chronic nephrotoxicity of anti-inflammatory drugs used in the treatment of arthritis. Br J Rheumatol. 1995;34:162.PubMedGoogle Scholar
  223. 223.
    Henrich WL, Agodoa LE, Barrett B, et al. Analgesics and the kidney: summary and recommendations to the scientific advisory board of the national kidney foundation from an ad hoc committee of the national kidney foundation. Am J Kidney Dis. 1996;27:162.PubMedGoogle Scholar
  224. 224.
    Finklestein A, Fraley D, Stachura I, et al. Fenoprofen nephropathy. Lipid nephrosis and interstitial nephritis. A possible T lymphocyte disorder. Am J Med. 1982;72:81.Google Scholar
  225. 225.
    Katz S, Capaldo R, Everts E, et al. Association with reversible renal failure and acute interstitial nephritis. JAMA. 1981;246:243.PubMedGoogle Scholar
  226. 226.
    Morgenstern SJ, Burns FJ, Fraley DS, et al. Ibuprofen-associated lipid nephrosis without interstitial nephritis. Am J Kidney Dis. 1989;16:50.Google Scholar
  227. 227.
    Schwartzman M, Dagati V. Spontaneous relapse of naproxen related nephrotic syndrome. Am J Med. 1987;82:329.PubMedGoogle Scholar
  228. 228.
    Blackshear JL, Napier JS, Davidman M, Stillman MT. Renal complications of nonsteroidal anti – inflammatory drugs: identification and monitoring of those at risk. Semin Arthritis Rheum. 1985;14:163.PubMedGoogle Scholar
  229. 229.
    Chen CY, Pang VF, Chen CS. Pathological and biochemical modifications of renal function in ibuprofen-induced interstitial nephritis. Ren Fail. 1996;18:31.PubMedGoogle Scholar
  230. 230.
    Goetzl E. Selective feedback inhibition of the 5-lipoxygenation of the arachidonic acid in human T-lymphocytes. Biochem Biophys Res Commun. 1981;101:344.PubMedGoogle Scholar
  231. 231.
    Torres VE. Present and future of the nonsteroidal anti-inflammatory drugs in nephrology. Mayo Clin Proc. 1982;57:389.PubMedGoogle Scholar
  232. 232.
    Siegl M, McConnel R, Porter N, et al. Arachidonate metabolism via lipoxygenase and 12-L-hydroperoxy-5,8,10,14-eicosatetraenoic acid peroxidase sensitive to anti-inflammatory drugs. Proc Natl Acad Sci USA. 1980;77:308.Google Scholar
  233. 233.
    Goetzl E. Mediators of immediate hypersensitivity derived from arachidonic acid. N Engl J Med. 1980;303:822.PubMedGoogle Scholar
  234. 234.
    Bhattacherjee P, Hammond B, Salmon JA, et al. Chemotactic response to some arachidonic acid lipoxygenase products in the rabbit eye. Eur J Pharmacol. 1981;73:21.PubMedGoogle Scholar
  235. 235.
    Schooley RT, Wagley PF, Lietman PS. Edema associated with ibuprofen therapy. JAMA. 1977;237:1716.PubMedGoogle Scholar
  236. 236.
    Nies AS, Gel J, Fadul S, et al. Indomethacin-furosemide interaction: the importance of renal blood flow. J Pharmacol Exp Ther. 1983;226:27.PubMedGoogle Scholar
  237. 237.
    Williamson HE, Bourland UA, Marchand GR. Inhibition of furosemide-induced increase in renal blood flow by indomethacin. Proc Soc Exp Biol Med. 1975;148:164.Google Scholar
  238. 238.
    Berg KJ. Acute effects of acetylsalicylic acid in patients with chronic renal insufficiency. Eur J Clin Pharmacol. 1977;11:111.PubMedGoogle Scholar
  239. 239.
    Patak RV, Moorkejeree BK, Bentzel CJ, et al. Antagonism of the effects of furosemide by indomethacin in normal and hypertensive men. Prostaglandins. 1975;10:649.PubMedGoogle Scholar
  240. 240.
    Tiggeler RG, Koene RA, Wijdeveld PG. Inhibition of furosemide-induced natriuresis by indomethacin in patients with nephrotic syndrome. Clin Sci Mol Med. 1977;2:149.Google Scholar
  241. 241.
    Mirouze D, Zisper RD, Reynolds TB. Effect of inhibitors of prostaglandin synthesis on induced cirrhosis. Hepatology. 1983;3:50.PubMedGoogle Scholar
  242. 242.
    Houston MC. Nonsteroidal anti-inflammatory drugs and antihypertensives. Am J Med. 1991;90:42S.PubMedGoogle Scholar
  243. 243.
    Luscher TF. Imbalance of endothelium-derived relaxing factor and contracting factors. Am J Hypertens. 1990;3:317.PubMedGoogle Scholar
  244. 244.
    Diederich D, Yang ZH, Buhler FR, et al. Impaired endothelium-dependent relaxations in hypertensive resistance arteries involve cyclooxygenase pathway. Am J Physiol. 1990;258:H445.PubMedGoogle Scholar
  245. 245.
    Minuz P, Barrow SE, Cockcroft JR, et al. Prostacyclin and thromboxane synthesis in mild essential hypertension. Hypertension. 1990;15:469.PubMedGoogle Scholar
  246. 246.
    Vane JR, Anggard EE, Botting M. Regulatory functions of the vascular endothelium. N Engl J Med. 1990;323:27.PubMedGoogle Scholar
  247. 247.
    Panzer JA, Quyyumi AA, Brush JE, et al. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med. 1990;323:22.Google Scholar
  248. 248.
    Linder L, Wolfgang K, Buhler FR, et al. Indirect evidence for release of endothelium-derived relaxing factor in human forearm circulation in vivo. Circulation. 1990;81:1762.PubMedGoogle Scholar
  249. 249.
    Kato T, Iwama Y, Okumura K, et al. Prostaglandin H2 may be the endothelium-derived contracting factor released by acetylcholine in the aorta of the rat. Hypertension. 1990;15:475.PubMedGoogle Scholar
  250. 250.
    Walshe JJ, Venuto RC. Acute oliguric renal failure induced by indomethacin: possible mechanism. Ann Intern Med. 1979;91:47.PubMedGoogle Scholar
  251. 251.
    Tan SY, Franco R, Stockard H, Luilrow RJ. Indomethacin-induced prostaglandin inhibition with hyperkalemia. A reversible cause of hyporeninemic hypoaldosteronism. Ann Intern Med. 1979;90:783.PubMedGoogle Scholar
  252. 252.
    Nicholls MG, Espiner EA. Indomethacin-induced azotemia and hyperkalaemia: a case study. N Z Med J. 1981;94:377.PubMedGoogle Scholar
  253. 253.
    Kutyrina JM, Andosova SO, Tareyeva IE. Indomethacin-induced hyporeninaemic hypoaldosteronism. Lancet. 1979;1:785.PubMedGoogle Scholar
  254. 254.
    Goldszer RC, Coodley EL, Rosner MJ, et al. Hyperkalemia associated with indomethacin. Arch Intern Med. 1981;141:802.PubMedGoogle Scholar
  255. 255.
    Clive DM, Stoff JS. Renal syndromes associated with nonsteroidal anti-inflammatory drugs. N Engl J Med. 1984;310:563.PubMedGoogle Scholar
  256. 256.
    Navis GJ, de Jong PE, de Zeeuw D. Serum uric acid, ace inhibitors and natriuresis. Lancet. 1985;2:156.PubMedGoogle Scholar
  257. 257.
    Dunn MJ, Hood VL. Prostaglandins and the kidney. Am J Physiol. 1977;233:F169.Google Scholar
  258. 258.
    Dunn MJ, Zambraski E. Renal effects of drugs that inhibit prostaglandin synthesis. Kidney Int. 1980;18:609.PubMedGoogle Scholar
  259. 259.
    Whelton A. Nephrotoxicity of nonsteroidal anti-inflammatory drugs: physiologic foundations and clinical implications. Am J Med. 1999;106:135.Google Scholar
  260. 260.
    Nakhai-Pour HR, Perrine B, Sheehy OS, Berard A. Use of nonaspirin nonsteroidal anti-inflammatory drugs during pregnancy and the risk of spontaneous abortion. CMAJ. 2011;183:1713–20.PubMedGoogle Scholar
  261. 261.
    Xie W, Chipman JG, Robertson DL, et al. Expression of mitogen-responsive gene encoding prostaglandin synthase is regulated by mRNA splicing. Proc Natl Acad Sci USA. 1991;88:2692.PubMedGoogle Scholar
  262. 262.
    Mitchell JA, Warner TD. Cyclooxygenase-2: pharmacology, physiology, biochemistry and relevance to NSAID therapy. Br J Pharmacol. 1999;128:1121.PubMedGoogle Scholar
  263. 263.
    Tegeder I, Neuper TW, Guhring H, Geisslinger G. Effects of selective and unselective cyclooxygenase inhibitors on prostanoid release from various rat organs. J Pharmacol Exp Ther. 2000;292:1161.PubMedGoogle Scholar
  264. 264.
    Hawkey CJ. Nonsteroidal anti-inflammatory drug gastropathy. Gastroenterology. 2000;119:521.PubMedGoogle Scholar
  265. 265.
    Verburg KM, Maziasz TJ, Weiner E, et al. COX-2-specific inhibitors: definition of a new therapeutic concept. Am J Ther. 2001;8:41.Google Scholar
  266. 266.
    Takeuchi K, Kagawa S, Mimaki H, et al. COX and NOS isoforms involved in acid-induced duodenal bicarbonate secretion in rats. Dig Dis Sci. 2002;47:2116.PubMedGoogle Scholar
  267. 267.
    Tani S, Suzuki T, Kano S, et al. Mechanisms of gastric mucus secretion from cultured rat gastric epithelial cells induced by carbachol, cholecystokinin octapeptide, secretion, and prostaglandin E2. Biol Pharm Bull. 2002;25:14.PubMedGoogle Scholar
  268. 268.
    Maricic N, Ehrlich K, Gretzer B, et al. Selective cyclooxygenase-2 inhibition aggravates ischemia­reperfusion injury in the rat stomach. Br J Pharmacol. 1999;128:1659.PubMedGoogle Scholar
  269. 269.
    Vane JR, Mitchell JA, Appleton T, et al. Inducible isoforms of cyclooxygenase and nitric oxide synthase in inflammation. Proc Natl Acad Sci USA. 1994;91:2046.PubMedGoogle Scholar
  270. 270.
    Ferraz JG, Sharkey KA, Reuter BK, et al. Induction of cyclooxygenase-1 and −2 in rat stomach during endotoxemia: role in resistance to damage. Gastroenterology. 1997;113:195.PubMedGoogle Scholar
  271. 271.
    Siegle I, Klein T, Backman JT, et al. Expression of cyclooxygenase-2 in human synovial tissue. Arthritis Rheum. 1998;41:122.PubMedGoogle Scholar
  272. 272.
    Michaluart P, Masferrer JL, Carothers AM, et al. Inhibitory effects of caffeic acid on the activity and expression of cyclooxygenase-2 in human oral epithelial cells and in a rat model of inflammation. Cancer Res. 1999;59:2347.PubMedGoogle Scholar
  273. 273.
    Mitchell JA, Belvisi MG, Akarasereenont P, et al. Induction of cyclooxygenase-2 by cytokines in human pulmonary epithelial cells: regulation by dexamethasone. Br J Pharmacol. 1994;113:1008.PubMedGoogle Scholar
  274. 274.
    Smith WL, Bell TG. Immunohistochemical localization of the prostaglandin-forming cyclooxygenase in renal cortex. Am J Physiol. 1978;235:F451.PubMedGoogle Scholar
  275. 275.
    Komhoff M, Crone HJ, Klein T, et al. Localization of cyclooxygenase-1 and −2 in adult and fetal human kidney: implication for renal function. Am J Physiol. 1977;272:F460.Google Scholar
  276. 276.
    Komhoff M, Jeck NO, Seyberth HW, et al. Cyclooxygenase-2 expression is associated with the renal macula densa of patients with Bartter-like syndrome. Kidney Int. 2000;58:2420.PubMedGoogle Scholar
  277. 277.
    Harris RC, McKanna JA, Akai Y, et al. Cyclooxygenase-2 is associated with macula densa of rat kidney and increases with salt restriction. J Clin Invest. 1994;94:2504.PubMedGoogle Scholar
  278. 278.
    Khan KN, Venturini CM, Bunch RT, et al. Expression of cyclooxygenase-2 in the macula densa of human kidney in hypertension, congestive heart failure, and diabetic nephropathy. Ren Fail. 2001;23:321.PubMedGoogle Scholar
  279. 279.
    Nantel F, Meadows E, Denis D, et al. lmmunolocalization of cyclooxygenase-2 in the macula densa of human elderly. FEBS Lett. 1999;457:475.PubMedGoogle Scholar
  280. 280.
    Kahn KN, Venturini CM, Bunch RT, et al. lnterspecies differences in renal localization of cyclooxygenase isoforms: implications in nonsteroidal anti-inflammatory drug-related nephrotoxicity. Toxicol Pathol. 1998;26:612.Google Scholar
  281. 281.
    Guan Y, Chang M, Cho W, et al. Cloning, expression and regulation of rabbit cyclooxygenase-2 in renal medullary interstitial cells. Am J Physiol. 1997;273:F18.PubMedGoogle Scholar
  282. 282.
    Adegboyega PA, Olalade O. Immunohistochemical expression of cyclooxygenase-2 in normal kidneys. Appl Immunohistochem Mol Morphol. 2004;12:71.PubMedGoogle Scholar
  283. 283.
    Fergusan S, Hebert RL, Laneuville O. NS-398 upregulates constitutive cyclooxygenase-2 expression in the M1 cortical collecting duct cell line. J Am Soc Nephrol. 1999;10:2261.Google Scholar
  284. 284.
    Yang T, Schnermann JB, Briggs JP. Regulation of cyclooxygenase-2 expression in renal medulla by tonicity in vivo and in vitro. Am J Physiol. 1999;277:F1.PubMedGoogle Scholar
  285. 285.
    Furst DE. Are there differences among nonsteroidal anti-inflammatory drugs? Comparing acetylated salicylates, nonacetylated salicylates, and nonacetylated nonsteroidal anti-inflammatory drugs. Arthritis Rheum. 1994;37:1.PubMedGoogle Scholar
  286. 286.
    Suleyman H, Demircan B, Karagoz Y. Anti-inflammatory and side effects of cyclooxygenase inhibitors. Pharmacol Rep. 2007;54:247.Google Scholar
  287. 287.
    Cryer B, Feldman M. Cyclooxygenase-1 and cyclooxygenase-2 selectivity of widely used nonsteroidal anti-inflammatory drugs. Am J Med. 1998;104:413.PubMedGoogle Scholar
  288. 288.
    Warner TD, Giuliano F, Vojnovic L, et al. Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: a full in vitro analysis. Proc Natl Acad Sci USA. 1999;96:7563.PubMedGoogle Scholar
  289. 289.
    Fries JF, Muller SR, Spitz PW, et al. Toward an epidemiology of gastropathy associated with nonsteroidal anti-inflammatory drug use. Gastroenterology. 1989;96:647.PubMedGoogle Scholar
  290. 290.
    Griffin MR, Piper JM, Daugherty JR, et al. Nonsteroidal anti-inflammatory drug use and increased risk for peptic ulcer disease in elderly persons. Ann Intern Med. 1991;114:257.PubMedGoogle Scholar
  291. 291.
    Gabriel SE, Jaaklimainen L, Bombadier C. Risk of serious gastrointestinal complications related to the use of nonsteroidal anti-inflammatory drugs: a meta analysis. Ann Intern Med. 1991;115:787.PubMedGoogle Scholar
  292. 292.
    Morris AJ, Madhok R, Sturrock RD, et al. Enteroscopic diagnosis of small bowel ulceration in patients receiving nonsteroidal anti-inflammatory drugs. Lancet. 1991;337:520.PubMedGoogle Scholar
  293. 293.
    Eng J, Sabanathan S. Drug-induced esophagitis. Am J Gasteroenterol. 1991;86:1127.Google Scholar
  294. 294.
    Henry D, Lim LL, Garcia Rodriguez LA, et al. Variability in the risk of gastrointestinal complications with individual nonsteroidal anti-inflammatory drugs: results of a collaborative meta­ analysis. Br Med J. 1996;312:1563.Google Scholar
  295. 295.
    Minocha A, Greenbaum OS. Pill-esophagitis caused by nonsteroidal anti-inflammatory drugs. Am J Gastroenterol. 1991;86:1086.PubMedGoogle Scholar
  296. 296.
    Fries JF, Williams CA, Block DA, Michel BA. Nonsteroidal anti-inflammatory drug associated gastropathy: incidence and risk factor models. Am J Med. 1991;91:213.PubMedGoogle Scholar
  297. 297.
    Shallcross TM, Healey RV. Effect of nonsteroidal anti-inflammatory drugs and esophageal injury. Br Med J. 1990;300:368.Google Scholar
  298. 298.
    Semble F, Wu WC, Castell DO. Nonsteroidal anti-inflammatory drugs and esophageal injury. Semin Arthritis Rheum. 1989;19:99.PubMedGoogle Scholar
  299. 299.
    Graham DY, Chan FKL. NSAIDS, risks, and gastroprotective strategies: current status and future. Gastroenterology. 2008;134:1240.PubMedGoogle Scholar
  300. 300.
    Moore RA, Derry S, McQuay HJ. Cyclooxygenase-2 selective inhibitors and nonsteroidal anti­ inflammatory drugs: balancing gastrointestinal and cardiovascular risk. BMC Musculoskelet Disord. 2007;8:73.PubMedGoogle Scholar
  301. 301.
    Sciulli MG, Capone ML, Tacconelli S, Patrignani P. The future of traditional nonsteroidal anti­ inflammatory drugs and cyclooxygenase-2 inhibitors in the treatment of inflammation and pain. Pharmacol Rep. 2005;57:66.PubMedGoogle Scholar
  302. 302.
    Simon LS. The COX2 selective inhibitors. What the newspapers have not told you. Bull NYU Hosp Jt Dis. 2007;65:229.PubMedGoogle Scholar
  303. 303.
    Mielants H, Goemaere S, DeVos M, et al. Intestinal mucosal permeability in inflammatory rheumatic diseases. I. Role of anti-inflammatory drugs. J Rheumatol. 1991;18:389.PubMedGoogle Scholar
  304. 304.
    Mielants H, DeVos M, Goemaere S, et al. Intestinal mucosal permeability in inflammatory rheumatic diseases. II. Role of disease. J Rheumatol. 1991;18:394.PubMedGoogle Scholar
  305. 305.
    Allison MC, Howatson AG, Torance CJ. Gastrointestinal damage associated with the use of nonsteroidal anti-inflammatory drugs. N Engl J Med. 1992;327:749.PubMedGoogle Scholar
  306. 306.
    Johnson AG. NSAIDS and increased blood pressure. What is the clinical experience? Drug Saf. 1977;17:277.Google Scholar
  307. 307.
    Gross JM, Dwyer JE, Know FG. Natriuretic response to increased pressure is preserved with COX-2 inhibitors. Hypertension. 1999;34:1163.PubMedGoogle Scholar
  308. 308.
    Catella-Lawson F, McAdam B, Morrison BW, et al. Effects of specific inhibition of cyclooxygenase-2 on sodium balance, hemodynamics, and vasoactive eicosanoids. J Pharmacol Exp Ther. 1999;289:735.PubMedGoogle Scholar
  309. 309.
    Zewde T, Mattson DL. Inhibition of cyclooxygenase-2 in the rat renal medulla leads to sodium­sensitive hypertension. Hypertension. 2004;44:424.PubMedGoogle Scholar
  310. 310.
    Rossat RJ, Maillard M, Nussberger J, et al. Renal effects of selective cyclooxygenase-2 inhibition in normotensive salt-depleted subjects. Clin Pharmacol Ther. 1999;66:76.PubMedGoogle Scholar
  311. 311.
    Stokes JB, Kokko JP. Inhibition of sodium transport by prostaglandin E2 across the isolated, perfused rabbit collecting tubule. J Clin Invest. 1977;59:1099.PubMedGoogle Scholar
  312. 312.
    Hebert RL, Jacobson HR, Breyer MD. Prostaglandin E2 inhibits sodium transport in rabbit cortical collecting duct by increasing intracellular calcium. J Clin Invest. 1991;87:1992.PubMedGoogle Scholar
  313. 313.
    Lopez-Parra M, Claria J, Planaguma A, et al. Cyclooxygenase-1 derived prostaglandins are involved in the maintenance of renal function in rats with cirrhosis and ascites. Br J Pharmacol. 2002;135:82.Google Scholar
  314. 314.
    Qi Z, Hao CM, Langenbach RL, et al. Opposite effects of cyclooxygenase-1 and −2 activity on the pressure response to angiotensin II. J Clin Invest. 2001;110:61.Google Scholar
  315. 315.
    Athirakul K, Kim HS, Audoly LP, et al. Deficiency of COX-1 causes natriuresis and enhanced sensitivity to ACE inhibition. Kidney Int. 2001;60:2324.PubMedGoogle Scholar
  316. 316.
    Johnson AG, Nguyen TV, Day RO. Do nonsteroidal anti-inflammatory drugs affect blood pressure? A meta analysis. Ann Intern Med. 1994;121:289.PubMedGoogle Scholar
  317. 317.
    de Leeuw PW. Nonsteroidal anti-inflammatory drugs and hypertension. The risks in perspective. Drugs. 1996;51:179.PubMedGoogle Scholar
  318. 318.
    Whelton A, Fort JG, Puma JA, et al. Cyclooxygenase-2-specific inhibitors and cardiorenal function: a randomized, control trial of celecoxib and rofecoxib in older hypertensive osteoarthritis patients. Am J Ther. 2001;8:85.PubMedGoogle Scholar
  319. 319.
    Whelton A, White WB, Bello AE, et al. Effects of celecoxib and rofecoxib on blood pressure and edema in patients  >  or  =  65 years of age with systemic hypertension and osteoarthritis. Am J Cardiol. 2002;90:959.PubMedGoogle Scholar
  320. 320.
    Sowers JR, White WB, Pitt B, et al. The effects of cyclooxygenase-2 inhibitors and nonsteroidal anti-inflammatory therapy on 24-hour blood pressure in patients with hypertension, osteoarthritis, and type 2 diabetes mellitus. Arch Intern Med. 2005;165:161.PubMedGoogle Scholar
  321. 321.
    Cheng HF, Wang JL, Zhang MZ, et al. Role of p38 in the regulation of renal cortical cyclooxygenase-2 expression by extracellular chloride. J Clin Invest. 2000;106:681.PubMedGoogle Scholar
  322. 322.
    Cheng HF, Harris RC. Cyclooxygenase-2 expression in cultured cortical thick ascending limb of Henle increases in response to decreased extracellular ionic content by both transcriptional and post-transcriptional mechanisms. Role of p38-mediated pathways. J Biol Chem. 2002;277:45638.PubMedGoogle Scholar
  323. 323.
    Yang T, Park JM, Arend L, et al. Low chloride stimulation of mouse macula densa cell line. J Biol Chem. 2000;275:37922.PubMedGoogle Scholar
  324. 324.
    Kammer MC, Nusing RM, Schweda F, et al. Low sodium and furosemide-induced stimulation of the renin system in man is mediated by cyclooxygenase- 2. Clin Pharmacol Ther. 2001;70:468.Google Scholar
  325. 325.
    Harris RC. The macula densa: recent developments. J Hypertens. 1996;14:815.PubMedGoogle Scholar
  326. 326.
    Mertz HL, Liu J, Valego NK, et al. Inhibition of cyclooxygenase-2: effects on renin secretion and expression in fetal lambs. Am J Physiol Regul Integr Comp Physiol. 2003;284:K1012.Google Scholar
  327. 327.
    Harris RC, Zhang MZ, Cheng HF. Cyclooxygenase-2 and the renal renin-angiotensin system. Acta Physiol Scand. 2004;181:543.PubMedGoogle Scholar
  328. 328.
    Cheng HF, Wang SW, Zhang MZ, et al. Prostaglandins that increase renin production in response to ACE inhibition are not derived from cyclooxygenase-1. Am J Physiol Regul Integr Comp Physiol. 2002;283:R638.PubMedGoogle Scholar
  329. 329.
    Wang JL, Cheng HF, Harris RC. Cyclooxygenase-2 inhibition decreases renin content and lowers blood pressure in a model of renovascular hypertension. Hypertension. 1999;34:96.PubMedGoogle Scholar
  330. 330.
    Castrop H, Schweda F, Schumacher K, et al. Role of renocortical cyclooxygenase-2 for renal vascular resistance and macular densa control of renin secretion. J Am Soc Nephrol. 2001;12:867.PubMedGoogle Scholar
  331. 331.
    Traynor TR, Smart A, Briggs JP, Schnermann J. Inhibition of macula densa-stimulated renin secretion by pharmacological blockade of cyclooxygenase-2. Am J Physiol. 1999;277:F706.PubMedGoogle Scholar
  332. 332.
    Cheng HF, Wang JL, Zhang MZ, et al. Genetic deletion of COX-2 prevents increased renin expression in response to ACE inhibition. Am J Physiol Renal Physiol. 2001;280:F449.PubMedGoogle Scholar
  333. 333.
    Strichtenoth DO, Wagner B, Frolich JC. Effect of selective inhibition of the inducible cyclooxygenase on renin release in healthy volunteers. J Investig Med. 1998;46:290.Google Scholar
  334. 334.
    Reinalter SC, Jeck N, Brochhausen C, et al. Role of cyclooxygenase-2 in hyperprostaglandin E syndrome/antenatal Bartter syndrome. Kidney Int. 2002;62:253.PubMedGoogle Scholar
  335. 335.
    Kleta K, Basoglu C, Kuwertz-Broking E. New treatment options for Bartter’s syndrome. N Engl J Med. 2000;343:661.PubMedGoogle Scholar
  336. 336.
    Dunn MJ. Prostaglandin 12 and the kidney. Arch Mal Coeur Vaiss. 1989;82:27.PubMedGoogle Scholar
  337. 337.
    Perazella MA, Tray K. Selective cyclooxygenase-2 inhibitors. A pattern of nephrotoxicity similar to traditional nonsteroidal anti-inflammatory drugs. Am J Med. 2001;111:64.PubMedGoogle Scholar
  338. 338.
    Ahmad SR, Kortepeter C, Brinker A, et al. Renal failure associated with the use of celecoxib and rofecoxib. Drug Saf. 2002;25:537.PubMedGoogle Scholar
  339. 339.
    Papaioannides D, Bouropoulas C, Sinapides D, et al. Acute renal dysfunction associated with selective COX-2 enzyme inhibitor therapy. Int Urol Nephrol. 2001;33:609.PubMedGoogle Scholar
  340. 340.
    Woywodt A, Schwarz A, Mengel M, et al. Nephrotoxicity of selective COX-2 inhibitors. J Rheumatol. 2003;28:2133.Google Scholar
  341. 341.
    Phelan KM, Mosholder AD, Lu S. Lithium interaction with the cyclooxygenase 2 inhibitors rofecoxib and celecoxib and other nonsteroidal anti-inflammatory drugs. J Clin Psychiatry. 2003;64:1328.PubMedGoogle Scholar
  342. 342.
    Harris RC, Breyer MD. Update on cyclooxygenase-2 inhibitors. Clin J Am Soc Nephrol. 2006;1:236.PubMedGoogle Scholar
  343. 343.
    Nasrallah R, Clark J, Hebert RL. Prostaglandins in the kidney: developments since Y2K. Clin Sci. 2007;113:297.PubMedGoogle Scholar
  344. 344.
    Cheng HF, Harris RC. Cyclooxygenases, the kidney and hypertension. Hypertension. 2004;43:525.PubMedGoogle Scholar
  345. 345.
    Knights KM, Tsoutsikos P, Miners JO. Novel mechanisms of nonsteroidal anti-inflammatory drug-induced renal toxicity. Expert Opin Drug Metab Toxicol. 2005;1:399.PubMedGoogle Scholar
  346. 346.
    Cheng HF, Harris RC. Renal effects of non-steroidal anti-inflammatory drugs and selective cyclooxygenase-2 inhibitors. Curr Pharm Des. 2005;11:1795.PubMedGoogle Scholar
  347. 347.
    Harris RC. COX-2 and the kidney. J Cardiovasc Pharmacol. 2006;47 Suppl 1:837.Google Scholar
  348. 348.
    Gambaro G, Perazella MA. Adverse renal effects of anti-inflammatory agents: evaluation of selective and nonselective cyclooxygenase inhibitors. J Intern Med. 2003;253:643.PubMedGoogle Scholar
  349. 349.
    Nasrallah R, Hebert RL. Prostacyclin signaling in the kidney: implications for health and disease. Am J Physiol Renal Physiol. 2005;289:235.Google Scholar
  350. 350.
    Lomnicka M, Karouni K, Sue M, et al. Effects of nonsteroidal anti-inflammatory drugs on prostacyclin and thromboxane in the kidney. Pharmacology. 2003;68:147.PubMedGoogle Scholar
  351. 351.
    Qi Z, Cai H, Morrow JD, Breyer MD. Differentiation of cyclooxygenase-1 and −2-derived prostanoids in mouse kidney and aorta. Hypertension. 2006;48:323.PubMedGoogle Scholar
  352. 352.
    Warford-Woolgar L, Peng CY, Tahiti J, et al. Selectivity of cyclooxygenase isoform activity and prostanoid production in normal and diseased Han: SPRD-cy kidneys. Am J Physiol Renal Physiol. 2006;290:F897.PubMedGoogle Scholar
  353. 353.
    Hetu PO, Riendeau D. Cyclo-oxygenase-2 contributes to constitutive prostanoid production in the rat kidney and brain. Biochem J. 2005;391:561.PubMedGoogle Scholar
  354. 354.
    Neuhofer W, Holzapfel K, Frack ML, et al. Chronic COX-2 inhibition reduces medullary HSP70 expression and induces papillary apoptosis in dehydrated rats. Kidney Int. 2004;65:431.PubMedGoogle Scholar
  355. 355.
    Kang DS, Kwon CH, Park JY, et al. 15-Deoxy-12, 14-prostaglandin J2 induces renal epithelial cell death through NF-KB-dependent and MAPK-independent mechanism. Toxicol Appl Pharmacol. 2006;216:426.PubMedGoogle Scholar
  356. 356.
    Chana RS, Lewington AJ, Brunskill NJ. Differential effects of peroxisome proliferation activated receptor-y (PPAR-y) ligands in proximal tubular cells: thiazolidinediones are partial PPAR­y agonists. Kidney Int. 2004;65:2081.PubMedGoogle Scholar
  357. 357.
    Sanchez-Gomez FJ, Cemuda-Morollon E, Stamatakis K, Perez-Sala D. Protein thiol modification by 15-deoxy-12, 14-prostaglandin J2 addition in mesangial cells: role in the inhibition of pro-inflammatory genes. Mol Pharmacol. 2006;66:1349.Google Scholar
  358. 358.
    Stamatakis K, Sanchez-Gomez FJ, Perez-Sala D. Identification of novel protein targets for modification by 15-deoxy-12, 14-prostaglandin J2 in mesangial cells reveals multiple interactions with the cytoskeleton. J Am Soc Nephrol. 2006;17:89.PubMedGoogle Scholar
  359. 359.
    Hebert RL, O’Connor T, Neville C, et al. Prostanoid signalling, localization and expression of IP receptors in rat thick ascending limb cells. Am J Physiol. 1998;275:F904.PubMedGoogle Scholar
  360. 360.
    Bek M, Nusing RM, Kowark P, et al. Characterization of prostanoids receptors in podocytes. J Am Soc Nephrol. 1999;10:2084.PubMedGoogle Scholar
  361. 361.
    Nasrallah R, Zimplemann J, Singh S, Hebert RL. Molecular and biochemical characterization of prostacyclin (IP) receptors in the rat kidney. Am J Physiol Renal Physiol. 2001;280:F266.PubMedGoogle Scholar
  362. 362.
    Oida H, Nambat T, Sugimoto Y, et al. In situ hybridization studies of prostacyclin receptor mRNA expression in various mouse organs. Br J Pharmacol. 1995;116:2828.PubMedGoogle Scholar
  363. 363.
    Komhoff M, Lesener B, Nakao K, et al. Localization of the prostacyclin receptor in human kidney. Kidney Int. 1998;54:1899.PubMedGoogle Scholar
  364. 364.
    Day R, Morrison B, Luza A, et al. A randomized trial of the efficacy and tolerability of the COX-2 inhibitor rofecoxib vs. ibuprofen in patients with osteoarthritis. Rofecoxib/lbuprofen Comparator Study Group. Arch Intern Med. 2000;160:1781.PubMedGoogle Scholar
  365. 365.
    Morrison BW, Christensen S, Yuan W, et al. Analgesic efficacy of the cyclooxygenase-2-specific inhibitor rofecoxib in post-dental surgery pain: a randomized, controlled trial. Clin Ther. 1999;21:943.PubMedGoogle Scholar
  366. 366.
    Cannon GW, Caldwell JR, Holt P, et al. Rofecoxib, a specific inhibitor of cyclooxygenase 2, with clinical efficacy comparable with that of diclofenac sodium: results of a one-year, randomized, clinical trial in patients with osteoarthritis of the knee and hip. Rofecoxib Phase Ill Protocol 035 Study Group. Arthritis Rheum. 2000;43:978.PubMedGoogle Scholar
  367. 367.
    Riecin A, Brown J, Jove M, et al. Efficacy of single-dose and multidose rofecoxib in the treatment of post-orthopedic pain. Am J Orthop. 2001;30:40.Google Scholar
  368. 368.
    Bombardier C, Laine L, Reicin A, et al. Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis. VIGOR Study Group. N Engl J Med. 2000;343:1520.PubMedGoogle Scholar
  369. 369.
    Lai KC, Chu KM, Hui WM, et al. Celecoxib compared with lansoprazole and naproxen to prevent gastrointestinal ulcer complications. Am J Med. 2005;118:1271.PubMedGoogle Scholar
  370. 370.
    Schnitzer TJ, Burmester GR, Mysler E, et al. Comparison of lumiracoxib with naproxen and ibuprofen in the Therapeutic Arthritis Research and Gastrointestinal Event Trial (TARGET), reduction in ulcer complications: randomized controlled trial. Lancet. 2004;364:665.PubMedGoogle Scholar
  371. 371.
    Chan FK, Hung LC, Suen BY, et al. Celecoxib versus diclofenac and omeprazole in reducing the risk of recurrent ulcer bleeding in patients with arthritis. N Engl J Med. 2002;347:2104.PubMedGoogle Scholar
  372. 372.
    Laine L, Curtis SP, Cryer B, et al. Assessment of upper gastrointestinal safety of etoricoxib and diclofenac in patients with osteoarthritis and rheumatoid arthritis in the Multinational Etoricoxib and Diclofenac Arthritis Long-term (MEDAL) programme. A randomized comparison. Lancet. 2007;369:465.PubMedGoogle Scholar
  373. 373.
    Juni P, Rutjes AW, Dieppe PA. Are selective COX-2 inhibitors superior to traditional nonsteroidal anti-inflammatory drugs? BMJ. 2002;324:1287.PubMedGoogle Scholar
  374. 374.
    Fenton C, Keating GM, Wagstaff AJ. Valdecoxib: a review of its use in the management of osteoarthritis, rheumatoid arthritis, dysmenorrheal, and acute pain. Drugs. 2004;64:1231.PubMedGoogle Scholar
  375. 375.
    Sikes DH, Agrawal NM, Zhao WW, et al. Incidence of gastroduodenal ulcers associated with valdecoxib compared with that of ibuprofen and diclofenac in patients with osteoarthritis. Eur J Gastroenterol Hepatol. 2002;14:1101.PubMedGoogle Scholar
  376. 376.
    Hunt RH, Harper S, Watson OJ, et al. The gastrointestinal safety of the COX-2 selective inhibitor etoricoxib assessed by both endoscopy and analysis of upper gastrointestinal events. Am J Gastroenterol. 2003;98:1725.PubMedGoogle Scholar
  377. 377.
    Davidge ST. Prostaglandin H synthase and vascular function. Circ Res. 2001;89:650.PubMedGoogle Scholar
  378. 378.
    Castella-Lawson F, McAdam B, Morrison BW, et al. Effects of specific inhibition of cyclooxygenase-2 on sodium balance, hemodynamics, and vasoactive eicosanoids. J Pharmacol Exp Ther. 1999;289:735.Google Scholar
  379. 379.
    Belton O, Byrne D, Kearney D, et al. Cyclooxygenase-1 and −2-dependent prostacyclin formation in patients with atherosclerosis. Circulation. 2000;102:840.PubMedGoogle Scholar
  380. 380.
    McAdam SF, Castella-Lawson F, Mardini IA, et al. Systemic biosynthesis of prostacyclin by cyclooxygenase (COX)-2: the human pharmacology of a selective inhibitor of COX-2. Proc Natl Acad Sci USA. 1999;96:272.PubMedGoogle Scholar
  381. 381.
    Belton OA, Duffy A, Toomey S, Fitzgerald OJ. Cyclooxygenase isoforms and platelet vessel wall interactions in the apolipoprotein E knockout mouse model of atherosclerosis. Circulation. 2003;108:3017.PubMedGoogle Scholar
  382. 382.
    Buerkle MA, Lehrer S, Solon HY, et al. Selective inhibition of cyclooxygenase-2 enhances platelet adhesion in hamster arterioles in vivo. Circulation. 2004;110:2053.PubMedGoogle Scholar
  383. 383.
    Kearney D, Byrne A, Cream P, et al. Optimal suppression of thromboxane A2 formation by aspirin during percutaneous transluminal coronary angioplasty: no additional effect of a selective cyclooxygenase-2 inhibitor. J Am Coll Cardiol. 2004;43:526.PubMedGoogle Scholar
  384. 384.
    Bresalier RS, Sandler RS, Quan H, et al. Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N Engl J Med. 2005;352:1092.PubMedGoogle Scholar
  385. 385.
    Solomon SD, McMurray JJ, Pfeiffer MA, et al. Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N Engl J Med. 2005;352:1071.PubMedGoogle Scholar
  386. 386.
    Furberg CD, Psaty BM, Fitzgerald GA. Parecoxib, valdecoxib, and cardiovascular risk. Circulation. 2005;111:249.PubMedGoogle Scholar
  387. 387.
    Hochman JS, Shah NR. What price pain relief? Circulation. 2006;113:2868.PubMedGoogle Scholar
  388. 388.
    Rahme E, Nedjar H. Risks and benefits of COX-2 inhibitors vs. non-selective NSAIDS: does their cardiovascular risk exceed their gastrointestinal benefit? A respective cohort study. Rheumatology. 2007;46:435.PubMedGoogle Scholar
  389. 389.
    Hawkey CJ, Hawkey GM, Everett S, et al. Increased risk of myocardial infarction as first manifestation of ischaemic heart disease and nonselective nonsteroidal anti-inflammatory drugs. Br J Clin Pharmacol. 2006;61:730.PubMedGoogle Scholar
  390. 390.
    Grosser T. The pharmacology of selective inhibition of COX-2. Thromb Haemost. 2006;96:393.PubMedGoogle Scholar
  391. 391.
    Grosser T, Fries S, Fitzgerald GA. Biological bases for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities. J Clin Invest. 2006;116:4.PubMedGoogle Scholar
  392. 392.
    Howes LG. Selective COX-2 inhibitors, NSAIDS and cardiovascular events – is celecoxib the safest choice? Ther Clin Risk Manag. 2007;3:831.PubMedGoogle Scholar
  393. 393.
    Caldwell B, Aldington S, Weatherall M, et al. Risk of cardiovascular events and celecoxib: a systematic review and meta-analysis. J R Soc Med. 2006;99:132.PubMedGoogle Scholar
  394. 394.
    McGettigan P, Henry D. Cardiovascular risk and inhibition of cyclooxygenase. A systematic review of the observational studies of selective and nonselective inhibitors of cyclooxygenase 2. JAMA. 2006;296:1633.PubMedGoogle Scholar
  395. 395.
    Zhang J, Ding EL, Song Y. Adverse effects of cyclooxygenase 2 inhibitors of renal and arrhythmia events. JAMA. 2006;296:1619.PubMedGoogle Scholar
  396. 396.
    Helm HK, Broich K. Selective COX-2 inhibitors and risk of thromboembolic events – regulatory aspects. Thromb Haemost. 2006;96:423.Google Scholar
  397. 397.
    Krotz F, Schiele TM, Klauss V, Sohn HY. Selective COX-2 inhibitors and risk of myocardial infarction. J Vasc Res. 2005;42:312.PubMedGoogle Scholar
  398. 398.
    Sutton JA. Nonselective nonsteroidal anti-inflammatory drugs and increased cardiovascular events: stress could be the explanation. Br J Clin Pharmacol. 2006;63:501.Google Scholar
  399. 399.
    Knights KM, Mangoni A, Miners JO. Non-selective anti-inflammatory drugs and cardiovascular events: is aldosterone the silent partner in crime? Br J Clin Pharmacol. 2006;61:738.PubMedGoogle Scholar
  400. 400.
    Kearney PM, Baigent C, Godwin J, et al. Do selective cyclo-oxygenase-2 inhibitors and traditional non-steroidal anti-inflammatory drugs increase the risk of atherothrombosis? Meta-analysis of randomized trials. BMJ. 2006;332:1302.PubMedGoogle Scholar
  401. 401.
    Gislason GH, Jacobsen S, Rasmussen JN, et al. Risk of death or reinfarction associated with the use of selective cyclooxygenase-2 inhibitors and nonselective nonsteroidal anti-inflammatory drugs after acute myocardial infarction. Circulation. 2006;113:2906.PubMedGoogle Scholar
  402. 402.
    McGettigan P, Han P, Henry D. Cyclooxygenase-2 inhibitors and coronary occlusion­exploring dose–response relationships. Br J Clin Pharmacol. 2006;62:358.PubMedGoogle Scholar
  403. 403.
    Andersohn F, Schade R, Suissa S, Garbe E. Cyclooxygenase-2 selective nonsteroidal anti­inflammatory drugs and the risk of ischemic stroke. A nested case–control study. Stroke. 2006;37:1725.PubMedGoogle Scholar
  404. 404.
    Hinz B, Renner B, Brune K. Drug insight: cyclo-oxygenase-2 inhibitors- a critical appraisal. Nat Clin Pract Rheumatol. 2007;3:552.PubMedGoogle Scholar
  405. 405.
    Brune K. Do case control studies on coxibs tell us anything new? Rheumatology. 2007;46:730.PubMedGoogle Scholar
  406. 406.
    Garcia Rodriguez LA, Varas C, Patrano C. Differential effects of aspirin and non-aspirin nonsteroidal anti-inflammatory drugs in the primary prevention of myocardial infarction in postmenopausal women. Epidemiology. 2000;11:382.PubMedGoogle Scholar
  407. 407.
    Andersohn F, Suissa S, Garber E. Use of first and second generation cyclooxygenase-2- selective nonsteroidal anti-inflammatory drugs and risk of acute myocardial infarction. Circulation. 2006;113:1950.PubMedGoogle Scholar
  408. 408.
    Johnson SP, Larsson H, Tarone RE, et al. Risk of hospitalization for myocardial infarction among users of rofecoxib, celecoxib, and other NSAIDS: a population-based case–control study. Arch Intern Med. 2005;165:978.Google Scholar
  409. 409.
    Matsko SP, Rascati KL, Busti AJ, et al. Temporal relationship between use of NSAIDS, including selective COX-2 inhibitors, and cardiovascular risk. Drug Saf. 2006;29:621.Google Scholar
  410. 410.
    Singh G, Lanes S, Triadafilopoulas G. Risk of serious upper gastrointestinal and cardiovascular thromboembolic complications with meloxicam. Am J Med. 2004;117:100.PubMedGoogle Scholar
  411. 411.
    Forman JP, Rimm EB, Curhan GC. Frequency of analgesic use and risk of hypertension among men. Arch Intern Med. 2007;167:394.PubMedGoogle Scholar
  412. 412.
    Neogi T. Gout. N Engl J Med. 2011;364:443–52.PubMedGoogle Scholar
  413. 413.
    Kalgutkar AS, Marnett AB, Crews BC, et al. Ester and amide derivatives of the nonsteroidal anti-inflammatory drug, indomethacin, as selective cyclooxygenase-2 inhibitors. J Med Chem. 2000;43:2860.PubMedGoogle Scholar
  414. 414.
    Bomalaski JS, Baker DG, Brophy LM, Clark MA. Monosodium urate crystals stimulate phospholipase A2 enzyme activities and the synthesis of phospholipase A2-activating protein. J Immunol. 1990;145:3391.PubMedGoogle Scholar
  415. 415.
    Reddy ST. Prostaglandin synthase-1 and prostaglandin synthase-2 are coupled to distinct phospholipases for the generation of prostaglandin D2 in activated mast cells. J Biol Chem. 1997;272:3231.PubMedGoogle Scholar
  416. 416.
    Marshall J, Krump E, Lindsay T, et al. Involvement of cytosolic phospholipase A2 and secretory phospholipase A2 in arachidonic acid release from human neutrophils. J Immunol. 2000;164:2084.PubMedGoogle Scholar
  417. 417.
    Suzuki N, Ishizaki J, Yokota Y, et al. Structures, enzymatic properties, and expression of novel human and mouse secretory phospholipase A(2)s. J Biol Chem. 2000;275:5785.PubMedGoogle Scholar
  418. 418.
    Murakami M, Naraba H, Tanioka T, et al. Regulation of prostaglandin E2 biosynthesis by inducible membrane-associated prostaglandin E2 synthase that acts in concert with cyclooxygenase-2. J Biol Chem. 2000;275:32783.PubMedGoogle Scholar
  419. 419.
    Balk SH, Kwon TK, Lim JH, et al. Secretory phospholipase A2-potentiated inducible nitric oxide synthase expression by macrophages requires NF-kappa B activation. J Immunol. 2000;164:6359.Google Scholar
  420. 420.
    Balk SH, Kwon TK, Lim JH, et al. Secretory phospholipase A2-potentiated inducible nitric oxide synthase expression by macrophages requires NF-kappa B activation. J Immunol. 2000;164:6359.Google Scholar
  421. 421.
    Roshak AK, Jackson JR, McGough K, et al. Manipulation of distinct NF kappa B proteins alters interleukin-1 beta-induced human rheumatoid synovial fibroblast prostaglandin E2 formation. J Biol Chem. 1996;271:31496.PubMedGoogle Scholar
  422. 422.
    Angel J, Berenbaum F, LeDenmat C, et al. Interleukin-1-induced prostaglandin E2 biosynthesis in human synovial cells involves the activation of cytosolic phospholipase A2 and cyclooxygenase-2. Eur J Biochem. 1994;226:125.PubMedGoogle Scholar
  423. 423.
    Bidgood MJ, Jamal OS, Cunningham AM, et al. Type IIA secretory phospholipase A2 up-regulates cyclooxygenase-2 and amplifies cytokine-mediated prostaglandin production in human rheumatoid synoviocytes. J Immunol. 2000;165:2790.PubMedGoogle Scholar
  424. 424.
    Vedgar S, Lichtenberg D, Schnitzer E. Inhibition of phospholipase A(2) as a therapeutic target. Biochim Biophys Acta. 2000;1488:182.Google Scholar
  425. 425.
    Munoz NM, Kim KP, Han SK, et al. Characterization of monoclonal antibodies specific for 14-kDa human group V secretory phospholipase A2 (hVPLA2). Hybridoma. 2000;19:171.PubMedGoogle Scholar
  426. 426.
    Morris HG, DeRoche G, Caro CM. Detection of synthetic corticosteroid analogues by the competitive protein-binding assay. Steroids. 1973;22:445.PubMedGoogle Scholar
  427. 427.
    Schleimer RP. Glucocorticoids: their mechanisms of action and use in allergic diseases. In: Middleton Jr E, Reed CE, Ellis EF, Adkinson Jr NF, Yunginger JW, editors. Allergy principles and practice, vol. 1. 3rd ed. St. Louis: CV Mosby; 1989. p. 739–65.Google Scholar
  428. 428.
    Lewis GP, Jusko WJ, Burke CW, Graves L. Prednisone side-effects and serum-protein levels. Lancet. 1971;2:778.PubMedGoogle Scholar
  429. 429.
    Bray R, Abrams S, Brahmi Z. Studies on the mechanism of human natural killer cell-mediated cytolysis. I. Modulation by dexamethasone and arachidonic acid. Cell Immunol. 1983;78:100.PubMedGoogle Scholar
  430. 430.
    Indiveri F, Scudeletti M, Pende D, et al. Inhibitory effect of a low dose of prednisone on PHA-induced Ia antigen expression by human T cells and on proliferation of T cells stimulated with autologous PHA-T cells. Cell Immunol. 1983;84:311.Google Scholar
  431. 431.
    Gerrard TL, Cupps FR, Jurgensen CH, Fauci AS. Increased expression of HLA-DR antigens in hydrocortisone-treated monocytes. Cell Immunol. 1984;84:311.PubMedGoogle Scholar
  432. 432.
    Gerrard TL, Cupps FR, Jurgensen CH, Fauci AS. Hydrocortisone-mediated inhibition of monocyte antigen presentation: dissociation of inhibitory effect and expression of DR antigens. Cell Immunol. 1984;85:330.PubMedGoogle Scholar
  433. 433.
    Munck A, Mendel DB, Smith LI, Orti E. Gluco­corticoid receptors and actions. Am Rev Respir Dis. 1990;141:S2.PubMedGoogle Scholar
  434. 434.
    Blackwell GJ, Carnuccio R, DiRosa M, et al. Macro­cortin: a polypeptide causing the antiphospholipase effect of corticosteroids. Nature. 1980;287:147.PubMedGoogle Scholar
  435. 435.
    Hirata F, Axelrod J. Phospholipid methylation and biological signal transmission. Science. 1980;20:1082.Google Scholar
  436. 436.
    Gupta C, Goldman AS. Dexamethasone-induced phospholipase A2-inhibitory proteins (PLIP) influenced by H-2 histocompatibility region. Proc Soc Exp Biol Med. 1985;178:29.PubMedGoogle Scholar
  437. 437.
    Gupta C, Katsumata M, Goldman AS, et al. Glucocorticoid-induced phospholipase A2-inhibitory proteins mediate glucocorticoid teratogenicity in vitro. Proc Natl Acad Sci USA. 1984;81:1140.PubMedGoogle Scholar
  438. 438.
    Webel ML, Ritts RE, Taswell HF, et al. Cellular immunity after intravenous administration of methylprednisolone. J Lab Clin Med. 1974;83:383.PubMedGoogle Scholar
  439. 439.
    Peterson AP, Altman LC, Hill JS, et al. Glucocorticoid receptors in normal human eosinophils: comparison with neutrophils. J Allergy Clin Immunol. 1981;62:212.Google Scholar
  440. 440.
    van der Velden VH. Glucocorticoids: mechanisms of action and anti-inflammatory potential in asthma. Mediators Inflamm. 1998;7:229.PubMedGoogle Scholar
  441. 441.
    Beato M, Candau R, Chavez S, et al. Interaction of steroid hormone receptors with transcription factors involves chromatin remodeling. J Steroid Biochem Mod Biol. 1996;56:47.Google Scholar
  442. 442.
    Biola A, Pallardy M. Mode of action of glucocorticoids. Presse Med. 2000;29:215.PubMedGoogle Scholar
  443. 443.
    Weigel NL. Steroid hormone receptors and their regulation by phosphorylation. Biochem J. 1996;319:657.PubMedGoogle Scholar
  444. 444.
    Xie W, Robertson DL, Simmons DL. Mitogen-inducible prostaglandin G/H synthase: new target for nonsteroidal anti-inflammatory drugs. Drug Dev Res. 1992;25:249.Google Scholar
  445. 445.
    Maier JA, Hla T, Maciag T. Cyclooxygenase is an intermediate-early gene induced by interleukin-1 in human endothelial cells. J Biol Chem. 1990;265:10805.PubMedGoogle Scholar
  446. 446.
    Lee SH, Soyoola E, Chanmugam P, et al. Selective expression of mitogen-inducible cyclooxygenase in macrophages stimulated with lipopolysaccharide. J Biol Chem. 1992;267:25934.PubMedGoogle Scholar
  447. 447.
    Szczepanski A, Moatter T, Carley WW, Gerritsen ME. Induction of cyclooxygenase II in human synovial microvessel endothelial cells by interleukin-1. Arthritis Rheum. 1994;37:495.PubMedGoogle Scholar
  448. 448.
    O’Banion MK, Sadowski HB, Winn V, Young DA. A serum- and glucocorticoid-regulated 4-kilobase mRNA encodes a cyclooxygenase-related protein. J Biol Chem. 1991;266:23261.PubMedGoogle Scholar
  449. 449.
    Raz A, Wyche A, Needleman P. Temporal and pharmacological division of fibroblast cyclooxygenase expression into transcriptional and translational phases. Proc Natl Acad Sci USA. 1989;86:1657.PubMedGoogle Scholar
  450. 450.
    Fu J-Y, Masferrer JL, Seibert K, et al. The induction and suppression of prostaglandin H synthase (cyclooxygenase) in human monocytes. J Biol Chem. 1990;265:16737.PubMedGoogle Scholar
  451. 451.
    Kujubu DA, Herschman H. Dexamethasone inhibits mitogen induction of TIS10 prostaglandin synthase (cyclooxygenase) gene. J Biol Chem. 1992;267:7991.PubMedGoogle Scholar
  452. 452.
    Kujubu DA, Reddy ST, Fletcher BS, Herschman H. Expression of the protein product of the prostaglandin synthase 2/TIS10 gene in mitogen-stimulated Swiss 3T3 cells. J Biol Chem. 1993;268:5425.PubMedGoogle Scholar
  453. 453.
    Sebaldt RJ, Sheller JR, Oates JA, et al. Inhibition of eicosanoid biosynthesis by glucocorticoids in humans. Proc Natl Acad Sci USA. 1990;87:6974.PubMedGoogle Scholar
  454. 454.
    Goppelt-Struebe M, Wolter D, Resch K. Glucocorticoids inhibit prostaglandin synthesis not only at the level of phospholipase A2 but also at the level of cyclooxygenase/PGE isomerase. Br J Pharmacol. 1989;98:1287.PubMedGoogle Scholar
  455. 455.
    Bailey JM, Makheja AN, Pash J, Verma M. Corticosteroids suppress cyclooxygenase messenger RNA levels and prostanoids synthesis in cultured vascular cells. Biochem Biophys Res Commun. 1988;157:1159.PubMedGoogle Scholar
  456. 456.
    Seibert K, Masferrer JL, Fu J-Y, et al. The biochemical and pharmacological manipulation of cellular cyclooxygenase (COX) activity. Adv Prostaglandin Thromboxane Leukot Res. 1990;21:45.Google Scholar
  457. 457.
    Neogi T. Interleukin-1 antagonism in acute gout: is targeting a single cytokine the answer? Arthritis Rheum. 2011;62:2845–9.Google Scholar
  458. 458.
    Goulding NJ, Pan L, Wardwell K, et al. Evidence for specific annexin-1-binding proteins on human monocytes. Biochem J. 1996;316:593.PubMedGoogle Scholar
  459. 459.
    Goulding NJ, Dixey J, Morand EF, et al. Differential distribution of annexins-1, -II, -IV, and –VI in synovium. Ann Rheum Dis. 1995;54:841.PubMedGoogle Scholar
  460. 460.
    Sampey AV, Hutchinson P, Morand EF. Annexin 1 surface binding sites and their regulation of human fibroblast-like synoviocytes. Arthritis Rheum. 2000;43:2537.PubMedGoogle Scholar
  461. 461.
    Yang Y, Leech M, Hutchinson P, et al. Antiinflammatory effect of lipocortin 1 in experimental arthritis. Inflammmation. 1997;21:583.Google Scholar
  462. 462.
    Yang YH, Hutchinson P, Santos LL, Morand EF. Glucocorticoid inhibition of adjuvant arthritis synovial nitric oxide production: role of lipocortin 1. Clin Exp Immunol. 1998;111:117.PubMedGoogle Scholar
  463. 463.
    Yang Y, Hutchinson P, Morand EF. Inhibitory effect of annexin 1 on synovial inflammation in rat adjuvant arthritis. Arthritis Rheum. 1999;42:1538.PubMedGoogle Scholar
  464. 464.
    Solito E, Nuti S, Parente L. Dexamethasone-induced translocation of lipocortin (annexin1) to the cell membrane of U-937 cells. Br J Pharmacol. 1994;112:347.PubMedGoogle Scholar
  465. 465.
    Bailey JM. New mechanisms for effects of anti-inflammatory glucocorticoids. Biofactors. 1991;3:97.PubMedGoogle Scholar
  466. 466.
    Bastian BC, Romisch J, Paques EP, Burg G. Lipocortins and phospholipases: new aspects in the physiology of glucocorticoid effect. Hautarzt. 1991;42:417.PubMedGoogle Scholar
  467. 467.
    Masferrer JL, Siebert K. Regulation of prostaglandin synthesis by glucocorticoids. Receptor. 1994;4:25.PubMedGoogle Scholar
  468. 468.
    Croxtall JD, Choudhury Q, Tokumoto T, Flower RJ. Lipocortin-1 and the control of arachidonic release in cell signalling. Glucocorticoids (changed from glucorticoids) inhibit G protein-dependent activation of cPLA2 activity. Biochem Pharmacol. 1995;50:465.PubMedGoogle Scholar
  469. 469.
    Minghetti L, Nicolini A, Polazzi E, et al. Down-regulation of microglial cyclooxygenase-2 and inducible nitric oxide synthase expression by lipocortin 1. Br J Pharmacol. 1999;126:1307.PubMedGoogle Scholar
  470. 470.
    Buckland AG, Wilton DC. Inhibition of human cytosolic phospholipase A2 by human annexin V. Biochem J. 1998;329:369.PubMedGoogle Scholar
  471. 471.
    Buckland AG, Wilton DC. Inhibition of secreted phospholipases A2 by annexin V. Competition for anionic phospholipid interfaces allows an assessment of the relative interfacial affinities of secreted phospholipases A2. Biochim Biophys Acta. 1998;1391:367.PubMedGoogle Scholar
  472. 472.
    Koumanov K, Wolf C, Bereziat G. Modulation of human type II secretory phospholipase A2 by sphingomyelin and annexin VI. Biochem J. 1997;326:227.PubMedGoogle Scholar
  473. 473.
    Mira JP, Dubois T, Oudinet JP, et al. Inhibition of cytosolic phospholipase A2 by annexin V in differentiated permeabilized HL-60 cells. Evidence of crucial importance of domain I type II Ca2+-binding site in the mechanism of inhibition. J Biol Chem. 1997;272:10474.PubMedGoogle Scholar
  474. 474.
    Goppelt-Struebe M. Molecular mechanisms involved in the regulation of prostaglandin biosynthesis by glucocorticoids. Biochem Pharmacol. 1997;53:1389.PubMedGoogle Scholar
  475. 475.
    Morand EF, Hutchinson P, Hargreaves A, et al. Detection of intracellular lipocortin 1 in human leukocyte subsets. Clin Immunol Immunopathol. 1995;76:195.PubMedGoogle Scholar
  476. 476.
    Euzger HS, Flower RJ, Goulding NJ, Perretti M. Differential modulation of annexin 1 binding sites on monocytes and neutrophils. Mediators Inflamm. 1999;8:53.PubMedGoogle Scholar
  477. 477.
    Comera C, Russo-Marie F. Glucocoriticoid-induced annexin 1 secretion by monocytes and peritoneal leukocytes. Br J Pharmacol. 1995;115:1043.PubMedGoogle Scholar
  478. 478.
    Sebalt RJ, Sheller JR, Oates JA, et al. Inhibition of eicosanoid biosynthesis by glucocorticoids in humans. Proc Natl Acad Sci USA. 1990;87:6974.Google Scholar
  479. 479.
    Butler WT, Rossen RD. Effects of corticosteroids in immunity in man. I. Decreased serum IgG concentration caused by 3 or 5 days of high doses of methylprednisolone. J Clin Invest. 1973;52:2629.PubMedGoogle Scholar
  480. 480.
    Kumar L, Newcomb RW, Ishizaka K, et al. IgE levels in sera of children with asthma. Pediatrics. 1973;47:848.Google Scholar
  481. 481.
    Bush RK, Geller M, Busse WW, et al. Response to corticosteroids in the hypereosinophilic syndrome: association with increased IgE levels. Arch Intern Med. 1978;138:1244.PubMedGoogle Scholar
  482. 482.
    Ricketti AJ, Greenberger PA, Patterson R. Serum IgE as an important aid in management of allergic bronchopulmonary aspergillosis. J Allergy Clin Immunol. 1984;74:68.PubMedGoogle Scholar
  483. 483.
    Dauchel H, Julen N, Lemercier C, et al. Expression of complement alternative pathway proteins by endothelial cells. Differential regulation by interleukin 1 and glucocorticoids. Eur J Immunol. 1990;20:1669.PubMedGoogle Scholar
  484. 484.
    Mukaida N, Zachariae CO, Gusella GL, Matsushima K. Dexamethasone inhibits the induction of monocyte chemotactic-activating factor production by IL-1 or tumor necrosis factor. J Immunol. 1990;146:1212.Google Scholar
  485. 485.
    Snyers L, Wit LD, Content J. Glucocorticoid upregulation of high affinity interleukin-6 receptors on human epithelial cells. Proc Natl Acad Sci USA. 1990;87:2838.PubMedGoogle Scholar
  486. 486.
    Rose B, Brown JSL. The effect of adrenalectomy on the histamine content of the tissues of the rat. Am J Physiol. 1941;131:589.Google Scholar
  487. 487.
    Daynes RA, Araneo BA. Contrasting effects of glucocorticoids on the capacity of T cells to produce the growth factors interleukin 2 and interleukin 4. Eur J Immunol. 1989;19:2319.PubMedGoogle Scholar
  488. 488.
    Chensue SW, Terebuh PD, Remick DG, et al. In vivo biologic and immunohistochemical analysis of interleukin-1α, β and tumor necrosis factor during experimental endotoxemia. Kinetics, Kupffer cell expression and glucocorticoid effects. Am J Pathol. 1991;138:395.PubMedGoogle Scholar
  489. 489.
    Makaida N, Shiroo M, Matsushima K. Genomic structure of the human monocyte-derived neutrophil chemotactic factor, IL-8. J Immunol. 1989;143:1366.Google Scholar
  490. 490.
    Hart PH, Whitty GA, Burgess DR, et al. Augmentation of glucocorticoid action on human monocytes by interleukin-4. Lymphokine Res. 1990;9:147.PubMedGoogle Scholar
  491. 491.
    Valent P, Bevec D, Maurier D, et al. Interleukin-4 promotes expression of mast cell ICAM-1 antigen. Proc Natl Acad Sci USA. 1991;88:3399.Google Scholar
  492. 492.
    Durant S, Homo-Delarche F, Duval D, et al. Opposite effects of glucocorticoid and an immunostimulating agent on prostaglandin production by two different cell types. Adv Prost Thromb Res. 1985;7:117.Google Scholar
  493. 493.
    Dunsky EH, Zweiman B, Fishchler E, Levy DA. Early effects of corticosteroids on basophils, leukocyte histamine and tissue histamine. J Allergy Clin Immunol. 1979;64:426.Google Scholar
  494. 494.
    Savendra-Delgado AM, Mathews KP, Pan PM, et al. Dose–response studies of the suppression of whole blood histamine and basophil counts by prednisone. J Allergy Clin Immunol. 1980;66:464.Google Scholar
  495. 495.
    Becker J, Grasso RJ. Suppression of phagocytosis by dexamethasone in macrophage cultures: inability of arachidonic acid, indomethacin, and nordihydroguaiaretic acid to reverse the inhibitory response mediated by a steroid-inducible factor. Int J Immunopharmacol. 1985;7:839.PubMedGoogle Scholar
  496. 496.
    Schleimer RP. Effects of glucocorticoids on inflammatory cells relevant to their therapeutic applications to asthma. Am Rev Respir Dis. 1990;141:S59.PubMedGoogle Scholar
  497. 497.
    Ward PA. The chemosuppression of chemotaxis. J Exp Med. 1966;124:209.PubMedGoogle Scholar
  498. 498.
    Wenck U, Speirs R. The effect of cortisone on blood leukocytes and peritoneal fluid cells of mice. Acta Haematol. 1957;17:193.PubMedGoogle Scholar
  499. 499.
    Thompson J, van Furth R. The effect of glucocorticoids on the kinetics of mononuclear phagocytes. J Exp Med. 1970;131:429.PubMedGoogle Scholar
  500. 500.
    Rindhart JJ, Sagone AI, Balcerzak SP, et al. Effects of corticosteroid therapy on human monocyte function. N Engl J Med. 1975;292:236.Google Scholar
  501. 501.
    Melewicz FM, Zeiger RS, Melton MH, et al. Increased peripheral blood monocytes with Fc receptors for IgE in patients with severe allergic disorders. J Immunol. 1981;126:1592.PubMedGoogle Scholar
  502. 502.
    Altman LC, Hill JS, Hairfield WM, Mullarkey MF. Effects of corticosteroids on eosinophil chemotaxis and adherence. J Clin Invest. 1981;67:28.PubMedGoogle Scholar
  503. 503.
    Allcock GH, Allegra M, Flower RJ, Perretti M. Neutrophil accumulation induced by bacterial lipopolysaccharide: effects of dexamethasone and annexin 1. Clin Exp Immunol. 2001;123:62.PubMedGoogle Scholar
  504. 504.
    Perretti M, Flower RJ. Cytokines, glucocorticoids and lipocortins in the control of neutrophil migration. Pharmacol Res. 1994;30:53.PubMedGoogle Scholar
  505. 505.
    Oliani SM, Paul-Clark MJ, Christian HC, et al. Neutrophil interaction with inflamed postcapillary venule endothelium alters annexin 1 expression. Am J Pathol. 2001;158:603.PubMedGoogle Scholar
  506. 506.
    Tailor A, Tomlinson A, Salas A, et al. Dexamethasone inhibition of leucocyte adhesion to rat mesenteric postcapillary venules: role of intercellular adhesion molecule 1 and KC. Gut. 1999;45:705.PubMedGoogle Scholar
  507. 507.
    Mancuso F, Flower RJ, Perretti M. Leucocyte transmigration, but not rolling or adhesion, is selectively inhibited by dexamethasone in the hamster post-capillary venule. Involvement of endogenous lipocortin 1. J Immunol. 1995;155:377.PubMedGoogle Scholar
  508. 508.
    Lim LH, Solito E, Russo-Marie F, et al. Promoting detachment of neutrophils adherent to murine postcapillary venules to control inflammation: effect of lipocortin 1. Proc Natl Acad Sci USA. 1998;95:14535.PubMedGoogle Scholar
  509. 509.
    Perretti M, Croxtall JD, Wheller SK, et al. Mobilizing lipocortin 1 in adherent human leukocytes downregulates their transmigration. Nat Med. 1996;2:1259.PubMedGoogle Scholar
  510. 510.
    Getting SJ, Flower RJ, Perretti M. Inhibition of neutrophil and monocyte recruitment by endogenous and exogenous lipocortin 1. Br J Pharmacol. 1997;120:1075.PubMedGoogle Scholar
  511. 511.
    Perretti M, Flower RJ. Measurement of lipocortin 1 levels in murine peripheral blood leucocytes by flow cytometry: modulation by glucocorticoids and inflammation. Br J Pharmacol. 1996;118:605.PubMedGoogle Scholar
  512. 512.
    Walther A, Riehemann K, Gerke V. A novel ligand of the formyl peptide receptor: annexin 1 regulates neutrophil extravasation by interacting with the FPR. Mol Cell. 2000;5:831.PubMedGoogle Scholar
  513. 513.
    Green PG, Strausbaugh HJ, Levine JD. Annexin 1 is a local mediator in neural-endocrine feedback of inflammation. J Neurophysiol. 1998;80:3120.PubMedGoogle Scholar
  514. 514.
    Dandona P, Thusu K, Hafeez R, et al. Effect of hydrocortisone on oxygen free radical generation by mononuclear cells. Metabolism. 1998;47:788.PubMedGoogle Scholar
  515. 515.
    Fahey JV, Newcombe DS. Regulation of bradykinin-induced cyclic AMP response by quinacrine and prostaglandin E2 and F2 alpha in human synovial fibroblasts. Inflammation. 1979;3:235.PubMedGoogle Scholar
  516. 516.
    Newcombe DS, Fahey JV, Ishikawa Y. Hydrocortisone inhibition of the bradykinin activation of human synovial fibroblasts. Prostaglandins. 1977;13:235.PubMedGoogle Scholar
  517. 517.
    Man CY, Cheung IT, Cameron PA, Rainer TH. Comparison of oral prednisolone/paracetamol and oral indomethacin/paracetamol combination therapy in the treatment of acute goutlike arthritis: a double-blind, randomized, controlled trial. Ann Emerg Med. 2007;49:670–7.PubMedGoogle Scholar
  518. 518.
    Janssens HJ, Janssen M, van de Lisdonk EH, van Riel PL, van Weel C. Use of oral prednisolone or naproxen for the treatment of gout arthritis: a double-blind, randomised equivalence trial. Lancet. 2008;371:1854–60.PubMedGoogle Scholar
  519. 519.
    Fernandez C, Nouera R, Gonzalez JA, Pascual E. Treatment of acute attacks of gout with a small dose of intraarticular triamcinolone acetonide. J Rheumatol. 1999;26:2285.PubMedGoogle Scholar
  520. 520.
    Frey FJ. Kinetics and dynamics of prednisolone. Endocrinol Rev. 1987;8(453):530.Google Scholar
  521. 521.
    Renner E, Harber FF, Jost G, et al. Effect of liver function on the metabolism of prednisone and prednisolone in humans. Gastroenterology. 1966;90:819.Google Scholar
  522. 522.
    Gambertoglio JG, Amend Jr WJC, Benet LZ. Pharmacokinetics and bioavailability of prednisone and prednisolone in health volunteers and patients. A review. J Pharmacokinet Biopharm. 1980;8:1.PubMedGoogle Scholar
  523. 523.
    Axelrod D, Preston S. Comparison of parental adrenocorticotrophic hormone with oral indomethacin in the treatment of acute gout. Arthritis Rheum. 1988;31:803.PubMedGoogle Scholar
  524. 524.
    Schroder K, Tschopp J. The inflammasomes. Cell. 2010;140:821–32.PubMedGoogle Scholar
  525. 525.
    Dalbeth N, Merriman T. Crystal ball gazing: new therapeutic targets for hyperuricaemia and gout. Rheumatology. 2008;48:222–6.PubMedGoogle Scholar
  526. 526.
    So A, De Smedt T, Revaz S, Tschopp J. A pilot study of IL-1 inhibition by anakinra in acute gout. Arthritis Res Ther. 2007;9:R28.PubMedGoogle Scholar
  527. 527.
    So A, De Meukemeester M, Pikhlak A, et al. Canakinumab for the treatment of acute flares in difficult-to-treat gouty arthritis: results of a multicenter, phase II. Dose-Ranging Study. Arthritis Rheum. 2010;62:3064–76.PubMedGoogle Scholar
  528. 528.
    Martinon F, Petrilli V, Mayor A, et al. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440:237–41.PubMedGoogle Scholar
  529. 529.
    Terkeltaub R, Sundy JS, Schumacher HR, et al. The interleukin-1 inhibitor rilonacept in treatment of chronic gouty arthritis: results of a placebo-controlled, monosequence crossover, non-randomised. Single-Blind Pilot Study. Ann Rheum Dis. 2009;68:1613–7.PubMedGoogle Scholar
  530. 530.
    Schumacher Jr HR, Sundy JS, Terkeltaub R, et al. Placebo-controlled study of rilonacept for gout flare prophylaxis during initiation of urate-lowering therapy (abstract). Arthritis Rheum. 2009;60:S410–1.Google Scholar
  531. 531.
    Buchanan MR. Sulfinpyrazone: relationship between dose, kinetics, plasma concentration and biological effects. Thromb Res. 1983;4(Suppl):89.Google Scholar
  532. 532.
    Buchanan MR, Endrengi L, Giles AR, Rosenfeld J. The effect of aspirin on the pharmacokinetics of sulfinpyrazone in man. Thromb Res. 1983;4(Suppl):145.Google Scholar
  533. 533.
    Buchanan MR, Rosenfeld J, Hirsch J. The prolonged effect of sulfinpyrazone on collagen-induced platelet aggregation in vivo. Thromb Res. 1978;13:883.PubMedGoogle Scholar
  534. 534.
    Wallis RB. Mechanism of action of sulfinpyrazone. Thromb Res. 1983;4(Suppl):31.Google Scholar
  535. 535.
    Wiley JS, Chesterman CN, Morgan FJ, Castaldi PA. The effect of sulfinpyrazone on the aggregation and release reactions of human platelets. Thromb Res. 1979;14:23.PubMedGoogle Scholar
  536. 536.
    Steele PO, Weily HS, Genton E. Platelet survival and adhesiveness in recurrent venous thrombosis. N Engl J Med. 1973;288:1148.PubMedGoogle Scholar
  537. 537.
    Sherry S. Clinical aspects of antiplatelet therapy. Semin Hematol. 1985;22:105.Google Scholar
  538. 538.
    Kaegi A, Pineo GF, Shimizo A, et al. Arteriovenous shunt and thrombosis by sulfinpyrazone. N Engl J Med. 1974;290:304.PubMedGoogle Scholar
  539. 539.
    Weilly HS, Genton E. Altered platelet function in patients with prosthetic mitral valves. Effect of sulfinpyrazone therapy. Circulation. 1970;42:967.Google Scholar
  540. 540.
    Ogryzlo MA, Harrison J. Evaluation of uricosuric agents in chronic gout. Ann Rheum Dis. 1957;16:425.PubMedGoogle Scholar
  541. 541.
    Emmerson BT. A comparison of uricosuric agents in gout, with special reference to sulfinpyrazone. Med J Aust. 1963;1:839.Google Scholar
  542. 542.
    Persellin RH, Schmid FR. The use of sulfinpyrazone in the treatment of gout reduces serum uric acid levels and diminishes severity of arthritis attacks with freedom from significant toxicity. JAMA. 1961;175:971.PubMedGoogle Scholar
  543. 543.
    Diamond HS, Aolino JS. Evidence for a postsecretory reabsorption site for uric acid in man. J Clin Invest. 1973;52:1490.Google Scholar
  544. 544.
    Fanelli Jr GM, Weiner IM. Urate excretion: drug interactions. J Pharmacol Sup Ther. 1979;210:186.Google Scholar
  545. 545.
    Burns JJ, Yu T-F, Ritterand A, et al. A potent new uricosuric agent, the sulfoxide metabolite of the phenylbutazone analogue, G-25671. J Pharmacol Exp Ther. 1957;119:418.PubMedGoogle Scholar
  546. 546.
    Perel JM, Dayton PG, Snell MM, et al. Studies of interactions among drugs in man at the renal level: probenecid and sulfinpyrazone. Clin Pharmacol Ther. 1974;10:834.Google Scholar
  547. 547.
    Yu T-F, Dayton PG, Gutman AB. Mutual suppression of the uricosuric effects of sulfinpyrazone and salicylates: a study of interactions between drugs. J Clin Invest. 1963;42:1330.Google Scholar
  548. 548.
    Domenjoz R. The pharmacology of the phenylbutazone analogues. Ann N Y Acad Sci. 1960;86:263.Google Scholar
  549. 549.
    Fitzgerald GA, Sherry S. Pharmacology and pharmacokinetics of platelet-active drugs under current clinical investigations. Adv Prost Thromb Leuko. 1982;10:107.Google Scholar
  550. 550.
    Dieterle W, Faigle JW, Mory H, et al. Biotransformations and pharmacokinetics of sulfinpyrazone (Anturane) in man. Eur J Clin Pharmacol. 1975;9:135.PubMedGoogle Scholar
  551. 551.
    Mahoney C, Wolfram KM, Nash PV, Bjornsson TD. Kinetics and metabolism of sulfinpyrazone. Clin Pharmacol Ther. 1983;33:491.Google Scholar
  552. 552.
    Dayton PG, Sicam LE, Landrau M, Burns JJ. Metabolism of sulfinpyrazone (Anturane) and other analogues of phenylbutazone in man. J Pharmacol Exp Med. 1961;132:287.Google Scholar
  553. 553.
    Eickhott TC, Kislak JW, Finland M. Sodium ampicillin: Absorption and excretion of intramuscular and intravenous doses in normal young men. Am J Med Sci. 1965;249:163.Google Scholar
  554. 554.
    Brater DC. Increase in diuretic effect of chlorothiazide by probenecid. Clin Pharmacol Ther. 1978;23:259.PubMedGoogle Scholar
  555. 555.
    Brooks PM, Bell MA, Sturrock RD, et al. The clinical significance of indomethacin-probenecid interaction. Br J Clin Pharmacol. 1974;1:287.PubMedGoogle Scholar
  556. 556.
    Goodwin CS, Sparell G. Inhibition of dapsone excretion by probenecid. Lancet. 1969;2:884.PubMedGoogle Scholar
  557. 557.
    Honari J, Blair A, Cutler RE. Effects of probenecid on furosemide kinetics and natriuresis in man. Clin Pharmacol Ther. 1977;22:395.PubMedGoogle Scholar
  558. 558.
    Laskin OL, de Miranda P, King DH, et al. Effects of probenecid on the pharmacokinetics and elimination of acyclovir in humans. Antimicrob Agents Chemother. 1982;21:804.PubMedGoogle Scholar
  559. 559.
    Runkel R, Mrosczak E, Chaplin M, et al. Naproxen-probenecid interaction. Clin Pharmacol Ther. 1978;24:710.Google Scholar
  560. 560.
    Schacter D, Manis JG. Salicylate and salicyl conjugates: fluorometric estimation, biosynthesis, and renal excretion in man. J Clin Invest. 1958;37:800.Google Scholar
  561. 561.
    Weiner IM, Washington JA, Mudge GH. Studies on the renal excretion of salicylate in the dog. Bull Johns Hopkins Hosp. 1959;105:284.PubMedGoogle Scholar
  562. 562.
    Weiner IM, Washington JA, Mudge GH. On the mechanism of action of probenecid on renal tubular secretion. Bull Johns Hopkins Hosp. 1960;106:333.PubMedGoogle Scholar
  563. 563.
    Israili ZH, Perel JM, Cunningham RF, et al. Metabolites of probenecid: chemical, physical and pharmacological studies. J Med Chem. 1972;15:709.PubMedGoogle Scholar
  564. 564.
    Perel JM, Dayton PG, Yu T-F, Gutman AB. Studies on the renal excretion of probenecid acyl glucuronide in man. Eur J Clin Pharmacol. 1971;3:106.Google Scholar
  565. 565.
    Schacter D. The chemical estimation of aryl glucuronides and its application to studies on the metabolism of benzoate and salicylate in man. J Clin Invest. 1957;36:297.Google Scholar
  566. 566.
    Yu T-F, Paton BC, Chenkin T, et al. Effect of allopurinol (4-hydroxypyrazole (3, 4-d) pyrimidine) on serum and urinary uric acid in primary and secondary gout. Am J Med. 1964;37:885.Google Scholar
  567. 567.
    Gutman AB. Uricosuric drugs, with special reference of probenecid and sulfinpyrazone. Adv Pharmacol. 1988;21:337.Google Scholar
  568. 568.
    Iven H, Brasch H. The effects of antibiotics and uricosuric drugs on the renal elimination of methotrexate and 7-hydroxymethotrexate in rabbits. Cancer Chemother Pharmacol. 1988;21:337.PubMedGoogle Scholar
  569. 569.
    Paxton JW. Interaction of probenecid with the protein binding of methotrexate. Pharmacology. 1984;28:86.PubMedGoogle Scholar
  570. 570.
    Kates RE, Tozer TN, Sorby DL. Increased methotrexate toxicity due to concurrent probenecid administration. Biochem Pharmacol. 1976;25:1485.PubMedGoogle Scholar
  571. 571.
    Basin KS, Escalante A, Beardmore TD. Severe pancytopenia in a patient taking low dose methotrexate and probenecid. J Rheumatol. 1991;18:609.PubMedGoogle Scholar
  572. 572.
    Caspi D, Liebart E, Graff E, et al. The effect of mini-dose aspirin on renal function and uric acid handling in elderly patients. Arthritis Rheum. 2000;43:103.PubMedGoogle Scholar
  573. 573.
    Burns CM, Wortmann RL. Gout therapeutics: new drugs for an old disease. Lancet. 2011;377:165–77.PubMedGoogle Scholar
  574. 574.
    Mertz DP. Therapy with allopurinol and benzbromarone, single and combined. Renal elimination of lithogenesis and colloid protective substances. Med Klin. 1977;72:664.PubMedGoogle Scholar
  575. 575.
    Broekhuysen J, Pacco M, Scon R, et al. Metabolism of benzbromarone in man. Eur J Clin Pharmacol. 1972;4:125.PubMedGoogle Scholar
  576. 576.
    de Vries JX, Walter-Sack I, Ittensohn A, Weber E. The isolation, identification and structure of a new hydroxylated metabolite of benzbromarone in man. Xenobiotica. 1989;19:1461.PubMedGoogle Scholar
  577. 577.
    Walter-Sack I, de Vries JX, Ittlesohn A, Weber E. Rapid and slow benzbromarone elimination phenotypes in man: benzbromarone and metabolites profiles. Eur J Clin Pharmacol. 1990;39:577.PubMedGoogle Scholar
  578. 578.
    Arnold PJ, Guserle R, Luckow V, et al. Liquid chromatography-mass spectrometry in metabolic research. I. Metabolites of benzbromarone in human plasma and urine. J Chromatogr. 1991;554:267.PubMedGoogle Scholar
  579. 579.
    de Vries JX, Walter-Sack I, Voss A, et al. Metabolism of benzbromarone in man: structure of new oxidative metabolites, 6-hydroxy- and 1’-oxo-benzbromarone, and the enantioselective formation and elimination of 1’-hydroxybenzbromarone. Xenobiotica. 1993;23:1435.PubMedGoogle Scholar
  580. 580.
    Delbarre F, Auscher C, Oliver JL, et al. Treatment of hyperuricemia and gout with derivatives of benzofuran. Sem Hop. 1967;43:1127.PubMedGoogle Scholar
  581. 581.
    Sternon J, Kocheleff P, Courturier E, et al. The hypouricemic effect of benzbromarone – study of 24 cases (preliminary results). Acta Clin Belg. 1967;22:285.PubMedGoogle Scholar
  582. 582.
    Sorenson LB, Levinson DJ. Clinical evaluation of benzbromarone: a new uricosuric drug. Arthritis Rheum. 1976;19:183.Google Scholar
  583. 583.
    Heel RC, Brogden RN, Speight TM, Avery GS. Benzbromarone: a review of its pharmacological properties and therapeutic use in gout and hyperuricaemia. Drugs. 1977;14:349.PubMedGoogle Scholar
  584. 584.
    Matzkies F. Effects and side effects of benzbromarone in the initial treatment of hyperuricemia and gout. Result of a field study of 3899 patients. Fortschr Med. 1978;96:1619.PubMedGoogle Scholar
  585. 585.
    Kuzmits R, Bresnik W, Muller MM. The effect of benzbromarone in gout patients with limited kidney function. Fortschr Med. 1979;97:2057.PubMedGoogle Scholar
  586. 586.
    Masbernard A, Giudicelli CP. Ten years’ experience with benzbromarone in the management of gout and hyperuricemia. S Afr Med J. 1981;59:701.PubMedGoogle Scholar
  587. 587.
    Berg H. Effectiveness and tolerance of long-term uricosuric treatment. Z Gesamte Inn Med. 1990;45:719.PubMedGoogle Scholar
  588. 588.
    Roch-Ramel F, Guisan B, Diezi J. Effects of uricosuric and antiuricosuric agents on urate transport in human brush-border membrane vesicles. J Pharmacol Exp Ther. 1997;280:839.PubMedGoogle Scholar
  589. 589.
    Fam AG. Difficult gout and new approaches for control of hyperuricemia in the allopurinol-allergic patient. Curr Rheumatol Rep. 2001;3:29.PubMedGoogle Scholar
  590. 590.
    Pascual E. Gout update: from lab to the clinic and back. Curr Opin Rheumatol. 2000;12:213.PubMedGoogle Scholar
  591. 591.
    Zurcher RM, Bock HA, Thiel G. Excellent uricosuric efficacy of benzbromarone in cyclosporine-A-treated renal transplant patients: a prospective study. Nephrol Dial Transplant. 1984;9:548.Google Scholar
  592. 592.
    Marcen R, Gallego N, Orofino L, et al. Impairment of tubular secretion of urate in renal transplant patients on cyclosporine. Nephron. 1995;70:307.PubMedGoogle Scholar
  593. 593.
    Hausch R, Wilkerson M, Singh E, et al. Tophaceous gout of the thoracic spine presenting as back pain and fever. J Clin Rheumatol. 1999;6:335.Google Scholar
  594. 594.
    Chaoui A, Garcia J, Kurt AM. Gouty tophus simulating soft tissue tumor in a heart transplant recipient. Skeletal Radiol. 1997;26:626.PubMedGoogle Scholar
  595. 595.
    Peeters P, Sennesael J. Low-back pain caused by spinal tophus – a complication of gout in a kidney transplant recipient. Nephrol Dial Transplant. 1998;13:3245.PubMedGoogle Scholar
  596. 596.
    Chopra KF, Schneiderman PS, Grossman ME. Finger pad tophi. Cutis. 1999;64:233.PubMedGoogle Scholar
  597. 597.
    Lhotta K, Gruber J, Sgonc R, et al. Apoptosis of tubular epithelial cells in familial juvenile gouty nephropathy. Nephron. 1998;79:340.PubMedGoogle Scholar
  598. 598.
    Perez Ruiz F, Calabozo M, Ferenendez Lopez J, et al. Treatment of chronic gout in patients with renal function impairment. J Clin Rheumatol. 1999;5:49.PubMedGoogle Scholar
  599. 599.
    Matzkies F. Long lasting normalization of uric acid after combination therapy with 300 mg of allopurinol and 60 mg of benzbromarone in patients with gout and hyperuricemia. Med Klin. 1992;87:460.Google Scholar
  600. 600.
    Muller FO, Schall R, Groenewoud G, et al. The effect of benzbromarone on allopurinol/oxypurinol kinetics in patients with gout. Eur J Clin Pharmacol. 1993;44:69.PubMedGoogle Scholar
  601. 601.
    Mertz DP, Eichhorn R. Does benzbromarone in therapeutic doses raise renal excretion of oxypurinol? Klin Wochenschr. 1984;62:1170.PubMedGoogle Scholar
  602. 602.
    Marinchev L, Kunev K. The effect of benzbromarone on hyperlipidemia in gout. Vutr Boles. 1990;29:99.PubMedGoogle Scholar
  603. 603.
    Takahashi H, Sato T, Shimoyama Y, et al. Potentiation of anticoagulant effect of warfarin caused by enantioselective metabolic inhibition by the uricosuric agent benzbromarone. Clin Pharmacol Ther. 1999;66:569.PubMedGoogle Scholar
  604. 604.
    Sinclair D, Fox IH. The pharmacology of hypouricemic effect of benzbromarone. J Rheumatol. 1975;2:437.PubMedGoogle Scholar
  605. 605.
    Politta G, Barthoud S, Goudin G, et al. Mechanism of the uricosuric action of benzbromarone. Praxis. 1975;62:1345.Google Scholar
  606. 606.
    Yu T-F. Pharmacokinetic and clinical studies of a new uricosuric agent – benzbromarone. J Rheumatol. 1976;3:305.PubMedGoogle Scholar
  607. 607.
    Mertz DP. Veanderungen der Serumkoncentration von harnsaure unter der Wirkung von Benzbromaronum. Munchener Med Wochenschr. 1969;111:491.Google Scholar
  608. 608.
    Jain AK, Ryan JR, McMahon FG, Novack RJ. Effect of single oral doses of benzbromarone on serum and urinary uric acid. Arthritis Rheum. 1974;17:149.PubMedGoogle Scholar
  609. 609.
    Schepers GW. Benzbromarone therapy in hyperuricemia: comparison with allopurinol and probenecid. J Int Med Res. 1981;9:511.PubMedGoogle Scholar
  610. 610.
    Fromenty B, Fisch C, Labbe G, et al. Amiodarone inhibits the mitochondrial beta-oxidation of fatty acids and produces microvesicular steatosis of the liver in mice. J Pharmacol Exp Ther. 1990;255:1371.PubMedGoogle Scholar
  611. 611.
    Fromenty B, Fisch C, Berson A, et al. Dual effect of amiodarone on mitochondrial respiration. Initial protonophoric uncoupling effect followed by inhibition of the respiratory chain at the levels of complex I and complex II. J Pharmacol Exp Ther. 1990;255:1377.PubMedGoogle Scholar
  612. 612.
    Spaniol M, Bracher R, Ha HR, et al. Toxicity of amiodarone and amiodarone analogues on isolated rat liver mitochondria. J Hepatol. 2001;35:628.PubMedGoogle Scholar
  613. 613.
    Kaufmann P, Torok M, Hanni A, et al. Mechanism of benzarone- and benzbromarone-induced hepatic toxicity. Hepatology. 2005;41:925.PubMedGoogle Scholar
  614. 614.
    Hautekeete ML, Henrion J, Naegels S, et al. Severe hepatotoxicity related to benzarone: a recent report of three cases with two fatalities. Liver. 1995;15:25.PubMedGoogle Scholar
  615. 615.
    Babany G, Larrey D, Pessayre D, et al. Chronic active hepatitis caused by benzarone. J Hepatol. 1987;5:332.PubMedGoogle Scholar
  616. 616.
    van der Klauw MM, Hautman PM, Stricker BH, Spoelstra P. Hepatic injury caused by benzbromarone. J Hepatol. 1994;20:376.PubMedGoogle Scholar
  617. 617.
    Klinenberg JR, Goldfinger SE, Seegmiller JE. The effectiveness of xanthine oxidase inhibitor in the treatment of gout. Ann Intern Med. 1965;62:639.PubMedGoogle Scholar
  618. 618.
    Rundles RW, Wyngaarden JB, Hitchings GH, et al. Effects of a xanthine oxidase inhibitor in thiopurine metabolism, hyperuricemia, and gout. Trans Assoc Am Physicians. 1963;76:126.Google Scholar
  619. 619.
    Spector T. Inhibition of urate production by allopurinol. Biochem Pharmacol. 1977;26:355.PubMedGoogle Scholar
  620. 620.
    Elion GB. Enzymatic and metabolic studies with allopurinol. Biochem Pharmacol. 1977;26:355.Google Scholar
  621. 621.
    Kelley WN. Effects of drugs on uric acid in man. Annu Rev Pharmacol Toxicol. 1975;15:327.Google Scholar
  622. 622.
    Fox IH, Wyngaarden JB, Kelley WN. Depletion of erythrocyte phosphoribosylpyrophosphate in man, a newly observed effect of allopurinol. N Engl J Med. 1970;283:1177.PubMedGoogle Scholar
  623. 623.
    McCollister RJ, Gilbert Jr WR, Ashton DM, Wyngaarden JB. Pseudofeedback inhibition of purine synthesis by 6-mercaptopurine ribonucleotide and other purine analogues. J Biol Chem. 1964;239:1560.PubMedGoogle Scholar
  624. 624.
    Caskey CT, Ashton DM, Wyngaarden JB. The enzymology of feedback inhibition of glutamine phosphoribosylpyrophosphate amidotransferase by purine ribonucleotides. J Biol Chem. 1964;239:2570.PubMedGoogle Scholar
  625. 625.
    Kelley WN, Greene ML, Rosenbloom FM, et al. Hypoxanthine-guanine phosphoribosyltransferase deficiency and gout. Ann Intern Med. 1969;70:155.PubMedGoogle Scholar
  626. 626.
    Kelley WN, Rosenbloom FM, Muller J, Seegmiller JE. An enzymatic basis for variation in the response to allopurinol. N Engl J Med. 1968;278:287.PubMedGoogle Scholar
  627. 627.
    Fox RM, Royse-Smith LH, Dubb JW, et al. Orotidinuria induced by allopurinol. Science. 1970;168:861.PubMedGoogle Scholar
  628. 628.
    Kelley WN, Beardmore TD. Allopurinol: alteration in pyrimidine metabolism in man. Science. 1970;169:380.Google Scholar
  629. 629.
    Boston Collaborative Drug Surveillance Program. Allopurinol in relation to bone marrow depression. JAMA. 1974;227:1036.Google Scholar
  630. 630.
    Witten J, Frederickson PL, Mouridsen HT. The pharmacokinetics of cyclophosphamide in man after treatment with allopurinol. Acta Pharmacol Toxicol. 1980;46:392.Google Scholar
  631. 631.
    Rundles RW. Metabolic effects of allopurinol and alloxanthine. Ann Rheum Dis. 1966;25:615.PubMedGoogle Scholar
  632. 632.
    Vessel ES, Passananti GT, Greene FE. Impairment of drug metabolism in man by allopurinol and nortriptyline. N Engl J Med. 1970;283:1484.Google Scholar
  633. 633.
    Heymsfield SB, Arteaga C, McManus C, et al. Measurement of muscle mass in humans: validity of the 24-hour urinary creatinine method. Am J Clin Nutr. 1983;37:478.PubMedGoogle Scholar
  634. 634.
    Rowe JW, Andres R, Tobin JD, et al. The effect of age on creatinine clearance in men: a cross-sectional and longitudinal study. J Gerontol. 1976;31:155.PubMedGoogle Scholar
  635. 635.
    Levey AS, Berg RL, Gassman JJ, et al. Creatinine filtration, secretion and excretion during progressive renal disease. Kidney Int. 1989;36 Suppl 27:573.Google Scholar
  636. 636.
    Shemesh O, Golbetz H, Kriss JP, Myers BD. Limitations of creatinine as a filtration marker in glomerulonephritis patients. Kidney Int. 1985;28:830.PubMedGoogle Scholar
  637. 637.
    Terkeltaub RA. Gout. N Engl J Med. 2003;349:1647.PubMedGoogle Scholar
  638. 638.
    Shoji A, Yamanaka H, Kamatani N. A retrospective study of the relationship between serum urate and recurrent attacks of gouty arthritis: evidence for reduction of recurrent gouty arthritis with antihyperuricemic therapy. Arthritis Rheum. 2004;51:321.PubMedGoogle Scholar
  639. 639.
    Perez-Ruiz F, Calabozo M, Pijoan JE, et al. Effect of urate-lowering therapy on the velocity of size reduction of tophi in chronic gout. Arthritis Rheum. 2002;47:356.PubMedGoogle Scholar
  640. 640.
    Rott KT, Agudelo CA. Gout. JAMA. 2003;289:2857.PubMedGoogle Scholar
  641. 641.
    Yamanaka H, Tagashi R, Hakoda M, et al. Optimal range of serum urate concentrations to minimize risk of gouty attacks during anti-hyperuricemic treatment. Adv Exp Med Biol. 1998;431:13.PubMedGoogle Scholar
  642. 642.
    Wortmann RL. Recent advances in the management of gout and hyperuricemia. Curr Opin Rheumatol. 2005;17:319.PubMedGoogle Scholar
  643. 643.
    Li-Yu J, Clayburne G, Sieck M, et al. Treatment of chronic gout. Can we determine when urate stores are depleted enough to prevent attacks of gout? J Rheumatol. 2001;28:577.PubMedGoogle Scholar
  644. 644.
    Reinders MK, Nijdam LC, van Roon EN, et al. A simple method for quantification of allopurinol and oxypurinol in human serum by high-performance liquid chromatography with UV-detection. J Pharm Biomed Anal. 2007;45:312.PubMedGoogle Scholar
  645. 645.
    Day RO, Graham GG, Hicks M, et al. Clinical pharmacokinetics and pharmacodynamics of allopurinol and oxypurinol. Clin Pharmacokinet. 2007;46:623.PubMedGoogle Scholar
  646. 646.
    Landgrebe AR, Nyhan WL, Coleman M. Urinary tract stones resulting from the excretion of oxypurinol. N Engl J Med. 1975;292:626.PubMedGoogle Scholar
  647. 647.
    Stote RM, Smith LH, Dubb JW, et al. Oxypurinol nephrolithiasis in regional enteritis secondary to allopurinol therapy. Ann Intern Med. 1980;92:384.PubMedGoogle Scholar
  648. 648.
    Watts RWE, Sneeden W, Parker RA. A quantitative study of skeletal muscle purines and pyrazolo (3, 4-d) pyrimidine. Clin Sci. 1971;41:153.PubMedGoogle Scholar
  649. 649.
    Turnheim K, Krivaneck P, Oberbauer R. Pharmacokinetics and pharmacodynamics of allopurinol in the elderly and young subjects. Br J Clin Pharmacol. 1999;48:501.PubMedGoogle Scholar
  650. 650.
    Hande KR, Noone RM, Stone WT. Severe allopurinol toxicity. Description and guidelines for prevention in patients with renal insufficiency. Am J Med. 1978;76:47.Google Scholar
  651. 651.
    Boston Collaborative Drug Surveillance Program. Excess of ampicillin rashes associated with allopurinol or hyperuricemia. N Engl J Med 1972;286:505.Google Scholar
  652. 652.
    Emmerson BT, Hazelton RA, Frazer IH. Some adverse reactions to allopurinol may be mediated by lymphocyte reactivity to oxypurinol. Arthritis Rheum. 1988;31:436.PubMedGoogle Scholar
  653. 653.
    Garbe E, Suissa S, LeLorier J. Exposure to allopurinol and the risk of cataract extraction in elderly patients. Arch Ophthalmol. 1998;116:1652.PubMedGoogle Scholar
  654. 654.
    Zell SC, Carmichael JM. Evaluation of allopurinol use in patients with gout. Am J Hosp Pharm. 1989;46:1813.PubMedGoogle Scholar
  655. 655.
    Tjandramaga TB, Cucinall SD, Israili ZH, et al. Observation of the disposition of probenecid in patients receiving allopurinol. Pharmacology. 1972;8:259.PubMedGoogle Scholar
  656. 656.
    Hung SI, Chung WH, Liou LB, et al. HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc Natl Acad Sci USA. 2005;102:4134.PubMedGoogle Scholar
  657. 657.
    Arellano F, Sacristan JA. Allopurinol hypersensitivity syndrome: a review. Ann Pharmacother. 1993;27:337.PubMedGoogle Scholar
  658. 658.
    Aubock J, Fritsch P. Asymptomatic hyperuricaemia and allopurinol induced toxic epidermal necrolysis. Br Med J. 1985;290:1969.Google Scholar
  659. 659.
    Wortmann RL. Gout and hyperuricemia. Curr Opin Rheumatol. 2002;14:281.PubMedGoogle Scholar
  660. 660.
    Roujeau JC, Kelly JP, Naldi L, et al. Medication use and the risk of Stevens-Johnson syndrome or toxic epidermal necrolysis. N Engl J Med. 1995;333:1600.PubMedGoogle Scholar
  661. 661.
    Halevy S, Ghislain PD, Mockenhaupt M, et al. Allopurinol is the most common cause of Stevens-Johnson syndrome and toxic epidermal necrolysis in Europe and Israel. J Am Acad Dermatol. 2008;58:25.PubMedGoogle Scholar
  662. 662.
    Pluim HJ, van Deuren M, Wetzels JF. The allopurinol hypersensitivity syndrome. Neth J Med. 1998;52:107.PubMedGoogle Scholar
  663. 663.
    Shalom R, Rimbroth S, Rozenman D, Markel A. Allopurinol-induced recurrent DRESS syndrome: pathophysiology and treatment. Ren Fail. 2008;30:327.PubMedGoogle Scholar
  664. 664.
    Markel A. Allopurinol-induced recurrent DRESS syndrome. Isr Med Assoc J. 2005;7:656.PubMedGoogle Scholar
  665. 665.
    Dia B, Ba-Fall K, Bouldouryre M, et al. DRESS syndrome to allopurinol: a case in Dakar. Dakar Med. 2004;49:114.PubMedGoogle Scholar
  666. 666.
    Marrakchi C, Kanoun F, Kilani B, et al. Allopurinol-induced DRESS syndrome. Rev Med Interne. 2004;25:252.PubMedGoogle Scholar
  667. 667.
    Roujeau JC, Stern RS. Severe adverse cutaneous reactions to drugs. N Engl J Med. 1994;331:1272.PubMedGoogle Scholar
  668. 668.
    Sontheimer R, Houpt KR. DIDMOHS: a proposed consensus nomenclature for the drug induced delayed multiorgan hypersensitivity syndrome. Arch Dermatol. 1998;134:874.PubMedGoogle Scholar
  669. 669.
    Bocquet H, Bagot M. Drug-induced pseudolymphoma and hypersensitivity syndrome (drug rash with eosinophilia and systemic symptoms: DRESS. Semin Cutan Med Surg. 1996;15:250.PubMedGoogle Scholar
  670. 670.
    Bigby M, Jick S, Jick H, Arndt K. Drug-induced cutaneous reactions: a report from the Boston Collaborative Drug Surveillance Program on 15,438 consecutive inpatients, 1975–1982. JAMA. 1986;256:3358.PubMedGoogle Scholar
  671. 671.
    Alanko K, Stubb S, Kauppinen K. Cutaneous drug reactions: clinical types and causative agents: a five-year survey of in-patients (1981–1985). Acta Derm Venereol Suppl. 1989;69:223.Google Scholar
  672. 672.
    Ives TJ, Bentz EJ, Gwyther RE. Dermatologic adverse drug reactions in a family medicine setting. Arch Fam Med. 1992;1:241.PubMedGoogle Scholar
  673. 673.
    Leape LL, Brennan TA, Laird N, et al. The nature of adverse drug reactions in hospitalized patients: results of the Harvard Medical Practice Study II. N Engl J Med. 1990;324:377.Google Scholar
  674. 674.
    Chan HL, Stern RS, Arndt KA, et al. The incidence of erythema multiforme, Stevens-Johnson syndrome, and toxic epidermal necrolysis: a population-based study with particular reference to reactions caused by drugs among outpatients. Arch Dermatol. 1991;126:43.Google Scholar
  675. 675.
    Schopf E, Stuhmer A, Rzany B, et al. Toxic epidermal necrolysis and Stevens-Johnson syndrome: an epidemiologic study from West Germany. Arch Dermatol. 1991;127:839.PubMedGoogle Scholar
  676. 676.
    Revuz J, Penso D, Roujeau JC, et al. Toxic epidermal necrolysis: clinical findings and prognosis factors in 87 patients. Arch Dermatol. 1987;123:1160.PubMedGoogle Scholar
  677. 677.
    Anquier-Dunant A, Mockenhaupt M, Naldi L, et al. Correlations between clinical patterns and causes of erythema multiforme majus, Stevens-Johnson syndrome, and toxic epidermal necrolysis: results of an international prospective study. Arch Dermatol. 2002;138:1019.Google Scholar
  678. 678.
    Roujeau JC. Stevens-Johnson syndrome and toxic epidermal necrolysis are severity variants of the same disease which differs from erythema multiforme. J Dermatol. 1997;24:726.PubMedGoogle Scholar
  679. 679.
    Bastuji-Garin S, Rzany B, Stern RS, et al. Clinical classification of cases of toxic epidermal necrolysis, Stevens-Johnson syndrome, and erythema multiforme. Arch Dermatol. 1993;129:92.PubMedGoogle Scholar
  680. 680.
    Ruiz-Maldonado R. Acute disseminated epidermal necrosis types 1, 2, and 3: a study of sixty cases. J Am Acad Dermatol. 1985;13:623.PubMedGoogle Scholar
  681. 681.
    Stevens AM, Johnson FC. A new eruptive fever associated with stomatitis and ophthalmia: report of two cases in children. Am J Dis Child. 1922;24:526.Google Scholar
  682. 682.
    Lyell A. Toxic epidermal necrolysis: an eruption resembling scalding of the skin. Br J Dermatol. 1956;68:355.PubMedGoogle Scholar
  683. 683.
    Roupe G, Ahlmen M, Fagerberg B, Suurkula M. Toxic epidermal necrolysis with extensive mucosal erosions of the gastrointestinal and respiratory tracts. Int Arch Allergy Appl Immunol. 1986;80:145.PubMedGoogle Scholar
  684. 684.
    Chosidow O, Delchier JC, Chaumette MT, et al. Intestinal involvement in drug-induced toxic epidermal necrolysis. Lancet. 1991;337:928.PubMedGoogle Scholar
  685. 685.
    Timsit JF, Mion G, Rouyer N, et al. Bronchopulmonary distress associated with toxic epidermal necrolysis. Intensive Care Med. 1992;18:42.PubMedGoogle Scholar
  686. 686.
    Roujeau JC. Immune mechanisms in drug allergy. Allergol Int. 2006;55:27.PubMedGoogle Scholar
  687. 687.
    Hari Y, Frutig-Schnyder K, Hurni M, et al. T cell involvement in cutaneous drug eruptions. Clin Exp Allergy. 2001;31:1398.PubMedGoogle Scholar
  688. 688.
    Braden GL, Warzynski MJ, Golightly M, Ballow M. Cell-mediated immunity in allopurinol-induced hypersensitivity. Clin Immunol Immunopathol. 1994;70:145.PubMedGoogle Scholar
  689. 689.
    Pirmohamed M. Genetic factors in the predisposition to drug-induced hypersensitivity reactions. AAPS J. 2006;8:E20.PubMedGoogle Scholar
  690. 690.
    Melson RD. Familial hypersensitivity to allopurinol with subsequent desensitization. Rheumatology. 1999;38:1301.Google Scholar
  691. 691.
    Edwards SG, Hubbard V, Aylett S, Wren D. Concordance of primary generalized epilepsy and CBZ hypersensitivity in monozygotic twins. Postgrad Med J. 1999;75:680.PubMedGoogle Scholar
  692. 692.
    Gennis MA, Vemuri R, Burns EA, et al. Familial occurrence of hypersensitivity to phenytoin. Am J Med. 1991;91:631.PubMedGoogle Scholar
  693. 693.
    Johnson-Reagan L, Bahna SL. Severe drug rashes in 3 siblings simultaneously. Allergy. 2003;58:445.PubMedGoogle Scholar
  694. 694.
    Pellicano R, Selvestris A, Immantriono M, et al. Familial occurrence of fixed drug eruptions. Acta Derm Venereol. 1992;72:292.PubMedGoogle Scholar
  695. 695.
    Peyrierre H, Nicolas J, Seffert M, et al. Hypersensitivity related to abacavir in 2 members of a family. Ann Pharmacother. 2001;35:1291.Google Scholar
  696. 696.
    Peyriere H, Dereure O, Breton H, et al. Variability in the clinical pattern of cutaneous side-effects with systemic symptoms: does a DRESS syndrome really exist? Br J Dermatol. 2006;155:422.PubMedGoogle Scholar
  697. 697.
    Cameron JS, Simmonds HA. Use and abuse of allopurinol. Br Med J. 1987;294:1504.Google Scholar
  698. 698.
    Turnheim K, Krivanek P, Oberbauer R. Pharmacokinetics and pharmacodynamics of allopurinol in elderly and young subjects. Br J Clin Pharmacol. 1999;48:501.PubMedGoogle Scholar
  699. 699.
    Perez-Ruiz F, Hernando I, Villar I, Nolla JM. Correction of allopurinol dosing should be based on clearance of creatinine, but not plasma creatinine levels: Another insight to allopurinol-related toxicity. J Clin Rheumatol. 2005;11:129.PubMedGoogle Scholar
  700. 700.
    Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16:31.PubMedGoogle Scholar
  701. 701.
    Hande KR, Noone RM, Stone WJ. Severe allopurinol toxicity. Description and guidelines for prevention in patients with renal insufficiency. Am J Med. 1984;76:47.PubMedGoogle Scholar
  702. 702.
    Young Jr JL, Boswell RB, Nies AS. Severe allopurinol hypersensitivity-associated with thiazides and prior renal compromise. Arch Intern Med. 1974;134:553.PubMedGoogle Scholar
  703. 703.
    Loffler W, Landthaler R, de Vries JX, et al. Interaction of allopurinol and hydrochlorothiazide during prolonged oral administration of both drugs in normal subjects. I. Uric acid and kinetics. Clin Investig. 1994;72:1076.PubMedGoogle Scholar
  704. 704.
    Hande KR. Evaluation of a thiazide-allopurinol drug interaction. Am J Med Sci. 1986;292:213.PubMedGoogle Scholar
  705. 705.
    Breithaupt B, Tittel M. Kinetics of allopurinol after single intravenous and oral doses. Nonintervention with benzbromarone and hydrochlorothiazide. Eur J Clin Pharmacol. 1982;22:77.PubMedGoogle Scholar
  706. 706.
    Mills RM. Severe hypersensitivity reactions associated with allopurinol. JAMA. 1971;216:799.PubMedGoogle Scholar
  707. 707.
    Gelbort DR, Weinstein AB, Fajardo LF. Allopurinol-induced interstitial nephritis. Ann Intern Med. 1977;86:197.Google Scholar
  708. 708.
    Jarzobaki J, Ferry J, Wombelt D, et al. Vasculitis with allopurinol therapy. Am Heart J. 1970;79:116.Google Scholar
  709. 709.
    Grussendorf M, Andrassy K, Waldhern R, Ritz H. Systemic hypersensitivity to allopurinol with acute interstitial nephritis. Am J Nephrol. 1981;1:105.PubMedGoogle Scholar
  710. 710.
    Zanni MP, von Greyerz S, Schnyder B, et al. HLA-restricted, processing- and metabolism-independent pathway of drug recognition by human αβ T lymphocytes. J Clin Invest. 1998;102:1591.PubMedGoogle Scholar
  711. 711.
    Roujeau JC, Bracq C, Huyn NT, et al. HLA phenotypes and bullous cutaneous reactions to drugs. Tissue Antigens. 1986;28:251.PubMedGoogle Scholar
  712. 712.
    Roujeau JC, Huynh TN, Bracq C, et al. Genetic susceptibility to toxic epidermal necrolysis. Arch Dermatol. 1987;123:1171.PubMedGoogle Scholar
  713. 713.
    Shirato S, Kagaya F, Suzuki Y, Joukou S. Stevens-Johnson syndrome induced by methazolamide treatment. Arch Ophthalmol. 1997;115:550.PubMedGoogle Scholar
  714. 714.
    Chan SH, Tan T. HLA and allopurinol drug eruption. Dermatologica. 1989;179:32.PubMedGoogle Scholar
  715. 715.
    Chung WH, Hung SI, Hong HS, et al. Medical genetics: a marker for Stevens-Johnson syndrome. Nature. 2004;428:486.PubMedGoogle Scholar
  716. 716.
    Mallal S, Nolan D, Witt C, et al. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse transcriptase inhibitor Abacavir. Lancet. 2002;359:727.PubMedGoogle Scholar
  717. 717.
    Martin AM, Nolan D, Gaudieri S, et al. Predisposition to Abacavir hypersensitivity conferred by HLA-B*5701 and a haplotype Hsp 70-Hom variant. Proc Natl Acad Sci USA. 2004;101:4180.PubMedGoogle Scholar
  718. 718.
    Chessman D, Kostenko L, Lethborg T, et al. Human leukocyte antigen class 1-restricted activation of CD8+ T cells provides the immunogenetic basis of a systemic drug hypersensitivity. Immunity. 2008;28:822.PubMedGoogle Scholar
  719. 719.
    Schlosstein L, Terasaki PI, Bluestone R, Pearson CM. High association of an HL-A antigen, W27, with ankylosing spondylitis. N Engl J Med. 1973;288:704.PubMedGoogle Scholar
  720. 720.
    Brewerton DA, Hart FD, Nicholls A, et al. Ankylosing spondylitis and HL-A27. Lancet. 1973;1:904.PubMedGoogle Scholar
  721. 721.
    Geer L, Terasaki PI, Gjertson DW. HLA frequency. In: Gjertson DW, Terasaki PI, editors. HLA. Mt. Laurel: American Society of Histocompatibility Immunogenetics; 1998. p. 352–3.Google Scholar
  722. 722.
    Lonjou C, Borot N, Sekula P, et al. A European study of HLA-B in Stevens-Johnson syndrome and toxic epidermal necrolysis related to five high-risk drugs. Pharmacogenet Genomics. 2008;18:99.PubMedGoogle Scholar
  723. 723.
    Schneck J, Fagot JP, Sekula P, et al. Effects of treatments on the mortality of Stevens-Johnson syndrome and toxic epidermal necrolysis: a retrospective study of patients included in the prospective study EuroSCAR study. J Am Acad Dermatol. 2008;58:33.PubMedGoogle Scholar
  724. 724.
    Horiuchi H, Ota M, Kobayashi M, et al. A comparative study on the hypouricemic activity and potency in renal xanthine calculus formation of two xanthine oxidase/xanthine dehydrogenase inhibitors: TEI-6720 and allopurinol in rats. Res Commun Mol Pathol Pharmacol. 1999;104:293.PubMedGoogle Scholar
  725. 725.
    Osada Y, Tsuchimoto M, Fakushima H, et al. Hypouricemic effect of a novel xanthine oxidase inhibitor, TEI-6720, in rodents. Eur J Pharmacol. 1993;241:183.PubMedGoogle Scholar
  726. 726.
    Ishibuchi S, Morimoto H, Oe T, et al. Synthesis and structure activity relationships of 1-phenylpyrazoles as xanthine oxidase inhibitors. Bioorg Med Chem Lett. 2001;11:879.PubMedGoogle Scholar
  727. 727.
    Hashimoto T, Fukumari A, Yamada I, et al. Y-700, a novel inhibitor of xanthine oxidase, suppresses the development of colon aberrant crypt foci and cell proliferation in 1, 2-dimethylhyrazine-treated mice. Biosci Biotechnol Biochem. 2005;69:209.PubMedGoogle Scholar
  728. 728.
    Yamada I, Fukumari A, Osajima T, et al. Pharmaco­kinetics/pharmacodynamics of Y-700, a novel xanthine oxidase inhibitor, in rats and man. Nucleosides Nucleotides Nucleic Acids. 2004;23:1123.PubMedGoogle Scholar
  729. 729.
    Fukumari A, Okamoto K, Nishino T, et al. Y-700 [1-[3-cyano-4-(2,2-dimethylpropxy)phenyl]-1H-pyrazole-4-carboxylic acid]: a potent xanthine oxidoreductase inhibitor with hepatic excretion. J Pharmacol Exp Ther. 2004;311:519.Google Scholar
  730. 730.
    Okamoto K, Eger B, Nishino T, et al. An extremely potent inhibitor of xanthine oxidoreductase. Crystal structure of the enzyme-inhibitor complex and mechanism of inhibition. J Biol Chem. 2003;278:1848.PubMedGoogle Scholar
  731. 731.
    Chatham WW, Saag KG. Is Febuxostat a more effective treatment for hyperuricemia and gout than allopurinol? Nat Clin Pract Rheumatol. 2006;2:240.PubMedGoogle Scholar
  732. 732.
    Gelber AC. Febuxostat versus allopurinol for gout. N Engl J Med. 2006;354:1532.PubMedGoogle Scholar
  733. 733.
    Lustberg ME. Febuxostat versus allopurinol for gout. N Engl J Med. 2006;354:1532.PubMedGoogle Scholar
  734. 734.
    Okamoto K, Nishino T. Crystal structures of mammalian xanthine oxidoreductase bound with various inhibitors: allopurinol, Febuxostat, and FYX-051. J Nippon Med Sch. 2008;75:2.PubMedGoogle Scholar
  735. 735.
    Ziegler R. Febuxostat versus allopurinol for hyperuricemia. Med Monatsschr Pharm. 2006;29:384.PubMedGoogle Scholar
  736. 736.
    Becker MA, Schumacher Jr HR, Wortmann RL, et al. Febuxostat compared with allopurinol in patients with hyperuricemia and gout. N Engl J Med. 2005;353:2450.PubMedGoogle Scholar
  737. 737.
    Becker MA, Kisicki J, Khosravan R, et al. Febuxostat (TMX-67), a novel, non-purine, selective inhibitor of xanthine oxidase, is safe and decreases serum urate in healthy volunteers. Nucleosides Nucleotides Nucleic Acids. 2004;23:1111.PubMedGoogle Scholar
  738. 738.
    Mayer MD, Khosravan R, Verniller L, et al. Pharmacokinetics and pharmacodynamics of Febuxostat, a new non-purine selective inhibitor of xanthine oxidase, in subjects with renal impairment. Am J Ther. 2005;12:22.PubMedGoogle Scholar
  739. 739.
    Swan S, Khosravan R, Mayer MD, et al. Effect of renal impairment on pharmacokinetics, pharmacodynamics, and safety of Febuxostat (TMX-67), a novel non-purine selective inhibitor of xanthine oxidase. Arthritis Rheum. 2003;48 Suppl 9:SS29.Google Scholar
  740. 740.
    Becker MA, Schumacher HR, Wortmann RI, et al. Allopurinol intolerant patients treated with febuxostat for 4 years. Arthritis Rheum. 2008;54:S646.Google Scholar
  741. 741.
    Takano Y, Hase-Aoki K, Horiuchi H, et al. Selectivity of febuxostat, a novel non-purine inhibitor of xanthine oxidase. Life Sci. 2005;76:1835.PubMedGoogle Scholar
  742. 742.
    Goldstein M, Anderson LT, Reuben R, Dancis J. Self-mutilation in Lesch-Nyhan disease is caused by dopaminergic denervation. Lancet. 1985;1:338.PubMedGoogle Scholar
  743. 743.
    Pacher P, Nivorozhkin A, Szabo C. Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol Rev. 2006;58:87.PubMedGoogle Scholar
  744. 744.
    Hitchings GH, Elion GB. Chemical suppression of the immune response. Pharmacol Rev. 1963;15:365.PubMedGoogle Scholar
  745. 745.
    Elion GB. The purine path to chemotherapy. Nobel Lecture. Research Triangle Park: Burroughs Wellcome, Co.; 1988.Google Scholar
  746. 746.
    Elion GB. The quest for a cure. Annu Rev Pharmacol Toxicol. 1993;33:1.PubMedGoogle Scholar
  747. 747.
    Pea F. Pharmacology of drugs for hyperuricemia: mechanisms, kinetics and interactions. Contrib Nephrol. 2005;147:35.PubMedGoogle Scholar
  748. 748.
    Terkeltaub R, Bushinsky DA, Becker MA. Recent developments in our understanding of the renal basis of hyperuricemia and the development of novel antihyperuricemic therapeutics. Arthritis Res Ther. 2006;8 Suppl 1:S4.PubMedGoogle Scholar
  749. 749.
    Becker MA, Kisicki J, Khosravan R, et al. Febuxostat (TMX-67), a novel, non-purine, selective inhibitor of xanthine oxidase, is safe and decreases serum urate in healthy volunteers. Nucleosides Nucleotides Nucleic Acids. 2004;23:1111.PubMedGoogle Scholar
  750. 750.
    Schumacher jr HR, Becker MA, Lloyd E, et al. Febuxostat in the treatment of gout. Rheumatology. 2009;48:188.PubMedGoogle Scholar
  751. 751.
    Schumacher Jr HR, Becker MA, Wortmann HR, et al. Effects of febuxostat versus allopurinol and placebo in reducing serum urate. Arthritis Care Res. 2008;59:1540.Google Scholar
  752. 752.
    Schumacher Jr HR. Febuxostat: a non-purine, selective inhibitor of xanthine oxidase for the management hyperuricemia in patients with gout. Expert Opin Investig Drugs. 2005;14:893.PubMedGoogle Scholar
  753. 753.
    Khosravan R, Wu JT, Joseph-Ridge N, Vernillet L. Pharmacokinetic interactions of concomitant administration of Febuxostat and NSAIDS. J Clin Pharmacol. 2006;46:855.PubMedGoogle Scholar
  754. 754.
    Sanchez-Lozada LG, Tapia E, Bautista-Garcia P, et al. Effects of Febuxostat on metabolic and renal alterations in rats with fructose-induced metabolic syndrome. Am J Physiol Renal Physiol. 2008;294:F710.PubMedGoogle Scholar
  755. 755.
    Sanchez-Lozada LG, Tapia E, Jiminez A, et al. Fructose-induced metabolic syndrome is associated with glomerular hypertension and renal microvascular damage in rats. Am J Physiol Renal Physiol. 2007;292:F423.PubMedGoogle Scholar
  756. 756.
    Sanchez-Lozada LG, Tapia E, Soto V, et al. Treatment with the xanthine oxidase inhibitor, Febuxostat, lowers uric acid and alleviates systemic and glomerular hypertension in experimental hyperuricaemia. Nephrol Dial Transplant. 2008;23:1179.PubMedGoogle Scholar
  757. 757.
    Wu XW, Lee CC, Muzny DM, et al. Urate oxidase primary structure and evolutionary implications. Proc Natl Acac Sci USA. 1989;86:9412.Google Scholar
  758. 758.
    Baker JF, Krishnan E, Chen L, Schumacher HR. Recent developments, and where do they leave us? Am J Med. 2005;118:816.PubMedGoogle Scholar
  759. 759.
    Bickel C, Rupprecht HJ, Blankenberg S, et al. Serum uric acid as an independent predictor of mortality in patients with angiographically proven coronary artery disease. Am J Cardiol. 2002;89:12.PubMedGoogle Scholar
  760. 760.
    Lehto S, Niskanen L, Ronnemaa T, Laakso M. Serum uric acid is a strong predictor of stroke in patients with non-insulin dependent diabetes mellitus. Stroke. 1998;29:635.PubMedGoogle Scholar
  761. 761.
    Madsen TE, Muhlestein JB, Carlquist JF, et al. Serum uric acid independently predicts mortality in patients with significant, angiographically defined coronary disease. Am J Nephrol. 2005;25:45.PubMedGoogle Scholar
  762. 762.
    Tseng CH. Independent association of uric acid levels with peripheral arterial disease in Taiwanese patients with type 2 diabetes. Diabet Med. 2004;21:724.PubMedGoogle Scholar
  763. 763.
    Cherubini A, Polidori MC, Bregnocchi M, et al. Antioxidant profile and early outcome in stroke patients. Stroke. 2003;31:2295.Google Scholar
  764. 764.
    Tapp RJ, Shaw JE, de Courten MP, et al. Foot complications in Type 2 diabetes: an Australian population-based study. Diabet Med. 2003;20:105.PubMedGoogle Scholar
  765. 765.
    Newman EJ, Rahman FS, Lees KR, et al. Elevated serum urate concentration independently predicts poor outcome following stroke in patients with diabetes. Diabetes Metab Res Rev. 2006;22:79.PubMedGoogle Scholar
  766. 766.
    Verdecchia P, Schillaci G, Reboldi G, et al. Relationship between serum uric acid and risk of cardiovascular disease in essential hypertension. The PIUMA Study. Hypertension. 2000;36:1072.PubMedGoogle Scholar
  767. 767.
    Weir CI, Muir SW, Walters MR, Lee KR. Serum urate as an independent predictor of poor outcome and vascular events after acute stroke. Stroke. 2003;34:1951.PubMedGoogle Scholar
  768. 768.
    Frause LV, Pahor M, DiBari M, Shorr RI, et al. Serum uric acid, diuretic treatment and risk of cardiovascular events in the systolic hypertension in the elderly prgramme (SHEP). J Hypertens. 2000;188:1149.Google Scholar
  769. 769.
    DeLeeuw PW, Thijs L, Birkenhager WH, et al. Prognostic of renal function in elderly patients with isolated systolic hypertension: results from the Syst-Eur trial. J Am Soc Nephrol. 2002;13:2213.Google Scholar
  770. 770.
    Alderman MH, Cohen H, Madhavean S, Kivlighn S. Serum uric acid and cardiovascular events in successfully treated hypertensive patients. Hypertension. 1999;34:144.PubMedGoogle Scholar
  771. 771.
    Wang JG, Staessen JA, Faggard RH, et al. Prognostic significance of serum creatinine and uric acid in older Chinese patients with isolated systolic hypertension. Hypertension. 2001;37:1069.PubMedGoogle Scholar
  772. 772.
    Conger JD. Acute uric acid nephropathy. Semin Nephrol. 1981;1:69.Google Scholar
  773. 773.
    Crittenden DR, Ackerman GL. Hyperuricemic acute renal failure in disseminated carcinoma. Arch Intern Med. 1977;137:97.PubMedGoogle Scholar
  774. 774.
    Stuck KJ, White GM, Granke DS, et al. Urinary obstruction in azotemic patients: detection by sonography. AJR Am J Roentgenol. 1987;149:1191.PubMedGoogle Scholar
  775. 775.
    Coleman BG. Ultrasound of the upper genitourinary tract. Urol Clin North Am. 1985;12:633.PubMedGoogle Scholar
  776. 776.
    Rao KG, Hackler RH, Woodlief RM, et al. Real-time renal sonography in spinal cord injury patients: prespective comparison with excretory urography. J Urol. 1986;135:72.PubMedGoogle Scholar
  777. 777.
    Kaye AD, Pollack HM. Diagnostic imaging approach to the patient with obstructive uropathy. Semin Nephrol. 1982;2:55.Google Scholar
  778. 778.
    Bosniak MA, Megibow AJ, Ambos MA, et al. Computed tomography of ureteral obstruction. AJR Am J Roentgenol. 1982;138:1107.PubMedGoogle Scholar
  779. 779.
    Maker JF, Rath CE, Schreiner GE. Hyperuricemia complicating leukemia. Treatment with allopurinol and dialysis. Arch Intern Med. 1969;123:198.Google Scholar
  780. 780.
    Knochel JP, Mason AD. Effect of alkalinization on peritoneal diffusion of uric acid. Am J Physiol. 1980;210:1160.Google Scholar
  781. 781.
    Morino M, Shiigai N, Kusuyama H, Okada K. Extracorporeal shock wave lithotripsy and xanthine calculi in Lesch-Nyhan syndrome. Pediatr Radiol. 1992;22:304.PubMedGoogle Scholar
  782. 782.
    Kranen S, Keough D, Gordon RB, Emmerson BT. Xanthine-containing calculi during allopurinol therapy. J Urol. 1985;133:658.PubMedGoogle Scholar
  783. 783.
    Oka T, Utsunomiya M, Ichikawa Y, et al. Xanthine calculi in the patient with Lesch-Nyhan syndrome associated with urinary tract infection. Urol Int. 1985;40:138.PubMedGoogle Scholar
  784. 784.
    Morton WJ. Lesch-Nyhan syndrome. Urology. 1982;20:506.PubMedGoogle Scholar
  785. 785.
    Brock WA, Golden J, Kaplan GW. Xanthine calculi in the Lesch-Nyhan syndrome. J Urol. 1983;130:157.PubMedGoogle Scholar
  786. 786.
    Howell RR. The interrelationship of glycogen storage disease and gout. Arthritis Rheum. 1965;8:780.PubMedGoogle Scholar
  787. 787.
    Chen Y-T, Scheinman JI, Park HK, et al. Amelioration of proximal renal tubular dysfunction in Type I glycogen storage disease with dietary therapy. N Engl J Med. 1960;323:590.Google Scholar
  788. 788.
    Greene HL, Slonim AE, O’Neill Jr JA, Burr IM. Continuous nocturnal intragastric feeding for the management of type I glycogen storage disease. N Engl J Med. 1976;294:423.PubMedGoogle Scholar
  789. 789.
    Chen Y-T, Cornblath M, Sidbury JB. Cornstarch therapy of Type I glycogen-storage disease. N Engl J Med. 1984;310:171.PubMedGoogle Scholar
  790. 790.
    Wyke RJ, Rajkovic IA, Eddleston ALWF, Williams R. Defective opsonization and complement deficiency in serum from patients with fulminant hepatic failure. Gut. 1980;21:643.PubMedGoogle Scholar
  791. 791.
    Cornblath M, Schwartz R. Disorders of carbohydrate metabolism in infancy. In: Major Problems in Clinical Pediatrics, vol. 3. 2nd ed. Philadelphia: Saunders; 1976.Google Scholar
  792. 792.
    Odievre M, Gautier M, Rieu D. Intolerance hereditaire au fructose du nourrisson. Evolution des lesions histologiques hepatiques sous traitment dietetique prolonge (Etude de huit observations). Arch Fr Pediatr. 1969;26:433.PubMedGoogle Scholar
  793. 793.
    Hardinge MG, Swarner JB, Crooks H. Carbohydrate in foods. J Am Diet Assoc. 1965;46:197.PubMedGoogle Scholar
  794. 794.
    Somogyi JC, Trautner K. Der glucose-, fructose- und saccharosegehalt verschiedener gemusearten. Schweiz Med Wochenschr. 1974;104:177.PubMedGoogle Scholar
  795. 795.
    Mock DM, Perman JA, Thaler MM, Morris RC. Chronic fructose intoxication after infancy in children with hereditary fructose intolerance: A cause of growth retardation. N Engl J Med. 1983;309:764.PubMedGoogle Scholar
  796. 796.
    Brauman J, Kentos P, Frisque P, et al. Intolerance to hereditaire au fructose chez une femme de 83 ans. Acta Clin Belg. 1971;26:65.PubMedGoogle Scholar
  797. 797.
    Gitzelmann R, Steinmann B, van den Berghe G. Disorders of fructose metabolism. In: Scriver CR, Beaudet AL, Sly WE, Valle D, editors. The metabolic basis of inherited disease. New York: McGraw-Hill, Inc; 1989. p. 399–424.Google Scholar
  798. 798.
    Perez-Ruiz F, Alonso-Ruiz A, Calabozo M, et al. Efficacy of allopurinol and benzbromarone for the control of hyperuricemia: a pathogenic approach to the treatment of primary chronic gout. Ann Rheum Dis. 1998;57:545.PubMedGoogle Scholar
  799. 799.
    Perez-Ruiz F, Liote F. Lowering serum uric acid levels: what is the optimal target for improving clinical outcomes in gout? Arthritis Rheum. 2007;57:1324.PubMedGoogle Scholar
  800. 800.
    Sundy JS, Becker MA, Schumacher HR, et al. Multicenter longitudinal study of disease characteristics in patients with treatment failure gout. Ann Rheum Dis. 2006;65:272.Google Scholar
  801. 801.
    Fels E, Sundy JS. Refractory gout: what is it and what do we do about it? Curr Opin Rheumatol. 2008;20:198.PubMedGoogle Scholar
  802. 802.
    Sundy JS, Schumacher Jr HR, Wortmann RL, et al. Quality of life in patients with treatment failure gout. Ann Rheum Dis. 2006;65:271.Google Scholar
  803. 803.
    Geletka RC, Hershfield MS, Scarlett EL, Sundy JS. Severe gout is associated with impaired quality of life and functional status. Am Coll Rheumatol, 68th annual meeting, 16–21 Oct 2004.Google Scholar
  804. 804.
    Pal B, Foxtall M, Dysort T, et al. How is gout managed in primary care? A review of current practice and proposed guidelines. Clin Rheumatol. 2000;19:21.PubMedGoogle Scholar
  805. 805.
    de Klerk E, van Der Heijde D, Landewe R, et al. Patient compliance in rheumatoid arthritis, polymyalgia rheumatica, and gout. J Rheumatol. 2003;30:44.PubMedGoogle Scholar
  806. 806.
    Riedel AA, Nelson M, Joseph-Ridge N, et al. Compliance with allopurinol therapy among managed care enrollees with gout: a retrospective analysis of administrative claims. J Rheumatol. 2004;31:1575.PubMedGoogle Scholar
  807. 807.
    Dalbeth N, Kumar S, Stamp L, Gow P. Dose adjustment of allopurinol according to creatinine clearance does not provide adequate control of hyperuricemia in patients with gout. J Rheumatol. 2006;33:1646.PubMedGoogle Scholar
  808. 808.
    Vazquez-Mellado J, Morales EM, Pacheco-Tena C, Burgos-Vargas R. Relation between adverse events associated with allopurinol and renal function in patients with gout. Ann Rheum Dis. 2001;60:981.PubMedGoogle Scholar
  809. 809.
    Sundy JS, Ganson NJ, Kelly SJ, et al. Pharmacokinetics and pharmacodynamics of intravenous PEGylated recombinant mammalian urate oxidase in patients with refractory gout. Arthritis Rheum. 2007;56:1021.PubMedGoogle Scholar
  810. 810.
    Vogt B. Urate oxidase (Rasburicase) for treatment of severe tophaceous gout. Nephrol Dial Transplant. 2005;20:431.PubMedGoogle Scholar
  811. 811.
    Moolenburgh JD, Reinders MK, Jansen TL. Rasburicase treatment in severe tophaceous gout: a novel therapeutic option. Clin Rheumatol. 2006;25:749.PubMedGoogle Scholar
  812. 812.
    Hepburn AL, Kaye SA, Feher MD. Long-term remission from gout associated with fenofibrate therapy. Clin Rheumatol. 2003;22:73.PubMedGoogle Scholar
  813. 813.
    Takahashi S, Moriwaki Y, Yamamoto T, et al. Effects of combination treatment using antihyperuricaemic agents with fenofibrate and/or losartan on uric acid metabolism. Ann Rheum Dis. 2003;62:572.PubMedGoogle Scholar
  814. 814.
    Heburn AL, Kaye SA, Feher MD. Fenofibrate: a new treatment for hyperuricaemia and gout? Ann Rheum Dis. 2001;60:984.Google Scholar
  815. 815.
    Bastow MD, Durrington PN, Ishola M. Hypertriglyceridaemia and hyperuricaemia: effects of two fibric acid derivatives (bezafibrate and fenofibrate) in a double-blind, placebo-controlled trial. Metabolism. 1998;37:217.Google Scholar
  816. 816.
    Navolanic PM, Pui CH, Larson RA, et al. Elitek – rasburicase: an effective means to prevent and treat hyperuricemia associated with tumor lysis syndrome. Leukemia. 2003;17:499.PubMedGoogle Scholar
  817. 817.
    McDonnell AM, Lenz KL, Frei-Lahr DA, et al. Single-dose rasburicase 6 mg in the management of tumor lysis syndrome in adults. Pharmacotherapy. 2006;26:806.PubMedGoogle Scholar
  818. 818.
    de Bont JM, Pieters R. Management of hyperuricemia with rasburicase review. Nucleosides Nucleotides Nucleic Acids. 2004;23:1431.PubMedGoogle Scholar
  819. 819.
    Gabison L, Chiadris M, Colloch N, et al. Recapture of [S]-allantoin, the product of uric acid, by urate oxidase. FEBS Lett. 2006;580:2087.PubMedGoogle Scholar
  820. 820.
    Brogard JM, Coumaros D, Franckhauser J, et al. Enzymatic uricolysis: a study of the effect of a fungal urate-oxidase. Rev Eur Etud Clin Biol. 1972;17:890.PubMedGoogle Scholar
  821. 821.
    Legoux R, Delpech B, Dumont X, et al. Cloning and expression in Escherichia coli of the gene encoding Aspergillus flavus urate oxidase. J Biol Chem. 1992;267:8565.PubMedGoogle Scholar
  822. 822.
    Pui CH, Malmoud HH, Wiley JM, et al. Recombinant urate oxidase for the prophylaxis or treatment of hyperuricemia in patients with leukemia or lymphoma. J Clin Oncol. 2001;19:697.PubMedGoogle Scholar
  823. 823.
    Goldman SC, Holeenberg JS, Finklestein JZ, et al. A randomized comparison between rasburicase and allopurinol in children with lymphoma and leukemia at high risk for tumor lysis. Blood. 2001;97:2998.PubMedGoogle Scholar
  824. 824.
    Trujillo M, Morales M. Rasburicase-induced fatal respiratory arrest? Ann Oncol. 2007;18:399.PubMedGoogle Scholar
  825. 825.
    Jeha S, Kantarjian H, Irwin D, et al. Efficacy and safety of rasburicase, a recombinant urate oxidase (ElitekTM), in the management of malignancy-associated hyperuricemia in pediatric and adult patients, final results of a multicenter compassionate use trial. Leukemia. 2005;19:34.PubMedGoogle Scholar
  826. 826.
    Browning LA, Kruse JA. Hemolysis and methemoglobinemia secondary to rasburicase administration. Ann Pharmacother. 2005;39:1932.PubMedGoogle Scholar
  827. 827.
    Pui CH, Relling MV, Lascombes F, et al. Urate oxidase in prevention and treatment of hyperuricemia associated with lymphoid malignancies. Leukemia. 1997;11:1813.PubMedGoogle Scholar
  828. 828.
    Keating GM, Ormrod D. Micronised fenofibrate: An updated review of its clinical efficacy in the management of dyslipidaemia. Drugs. 2002;62:1909.PubMedGoogle Scholar
  829. 829.
    Desager JP, Hulloven R, Harvengt C. Uricosuric effect of fenofibrate in healthy volunteers. J Clin Pharmacol. 1980;20:560.PubMedGoogle Scholar
  830. 830.
    Elisaf M, Tsimichodimas V, Baeraktari E, Simopoulas KC. Effect of micronized fenofibrate and losartan combination on uric acid metabolism in hypertensive patients with hyperuricaemia. J Cardiovasc Pharmacol. 1999;34:60.PubMedGoogle Scholar
  831. 831.
    Feher MD, Casloke M, Foxton J, et al. Atherogenic lipoprotein phenotype in type 2 diabetes: reversal with fenofibrate. Diabetes Metab Res Rev. 1999;15:395.PubMedGoogle Scholar
  832. 832.
    Emmerson B. Hyperlipidaemia in hyperuricaemia and gout. Ann Rheum Dis. 1998;57:509.PubMedGoogle Scholar
  833. 833.
    Feldman EB, Wallace SL. Hypertriglyceridemia in gout. Circulation. 1964;29:508.PubMedGoogle Scholar
  834. 834.
    Fox IH, John D, DeBruyne S, et al. Hyperuricaemia and hypertriglyceridaemia: metabolic basis for the association. Metabolism. 1985;34:741.PubMedGoogle Scholar
  835. 835.
    Berkowitz D. Blood lipid and uric acid interrelationships. JAMA. 1964;190:856.PubMedGoogle Scholar
  836. 836.
    Feher MD, Hepburn AL, Hogarth MB, et al. Fenofibrate enhances urate reduction in men treated with allopurinol for hyperuricaemia and gout. Rheumatology. 2003;42:321.PubMedGoogle Scholar
  837. 837.
    Hepburn AL, Kaye SA, Feher MD. Fenofibrate: a new treatment for hyperuricaemia and gout? Ann Rheum Dis. 2001;60:984.PubMedGoogle Scholar
  838. 838.
    Lee YH, Lee CH, Lee J. Effect of fenofibrate in combination with urate lowering agents in patients wth gout. Korean J Intern Med. 2006;21:89.PubMedGoogle Scholar
  839. 839.
    Yamamoto T, Moriwaki Y, Takahashi S, et al. Effect of fenofibrate on plasma concentration and urinary excretion of purine bases and oxypurinol. J Rheumatol. 2001;28:2294.PubMedGoogle Scholar
  840. 840.
    Naritomi H, Fujita T, Ito S, et al. Efficacy and safety of long-term losartan therapy demonstrated by a prospective observational study in Japanese patients with hypertension. The Japanese Hypertension Evaluation with Angiotensin II Antagonist Losartan Therapy (J-HEALTH) Study. Hypertens Res. 2008;31:295.PubMedGoogle Scholar
  841. 841.
    Ito O, Hasegawa Y, Sato K, et al. A case of exercise-induced acute renal failure in a patient with idiopathic renal hypouricemia developed during antihypertensive therapy with losartan and trichloromethiazide. Hypertens Res. 2003;26:509.PubMedGoogle Scholar
  842. 842.
    Murakami T, Kawakami H, Fukuda M, Furukawa S. Patients with renal hypouricemia are prone to develop acute renal failure – why? Clin Nephrol. 1995;43:207.PubMedGoogle Scholar
  843. 843.
    Erley CM, Hirschberg RR, Hoefer W, Schaefer K. Acute renal failure due to uric acid nephropathy in a patient with renal hypouricemia. Klin Wochenschr. 1989;67:308.PubMedGoogle Scholar
  844. 844.
    Wurzner G, Gerster JC, Chiolero A, et al. Comparative effects of losartan and irbesartan on serum uric acid in hypertensive patients with hyperuricaemia and gout. J Hypertens. 2001;19:1855.PubMedGoogle Scholar
  845. 845.
    Puig JG, Torres R, Ruilope LM. AT1 blockers and uric acid metabolism: are there relevant differences? J Hypertens Suppl. 2002;20:529.Google Scholar
  846. 846.
    Rayner BL, Trinder YA, Baines D, et al. Effect of losartan versus candesartan on uric acid, renal function, and fibrinogen in patients with hypertension and hyperuricemia associated with diuretics. Am J Hypertens. 2006;19:208.PubMedGoogle Scholar
  847. 847.
    Tsunoda K, Abe K, Hagino T, et al. Hypotensive effect of losartan, a nonpeptide antiotensin II receptor antagonist, in essential hypertension. Am J Hypertens. 1993;6:28.PubMedGoogle Scholar
  848. 848.
    Burnier M, Rutschmann B, Nussberger J, et al. Salt-dependent renal effects of an angiotensin II antagonist in healthy subjects. Hypertension. 1993;22:339.PubMedGoogle Scholar
  849. 849.
    Nakashima M, Uematsu T, Kosuge K, et al. Pilot study of the uricosuric effect of DuP-753: a new angiotensin II receptor antagonist, in healthy subjects. Eur J Clin Pharmacol. 1992;42:333.PubMedGoogle Scholar
  850. 850.
    Flaherty JT, Edelman J, Kivlighn S. Effects of a low dose of thiazide diuretic on serum uric acid: comparison of a losartan-based regimen vs usual care. 71st scientific session, AHA, Circulation. 1999;I-723.Google Scholar
  851. 851.
    Soffer BA, Wright JT, Pratt JH, et al. Effects of losartan on a background of hydrochlorothiazide in patients with hypertension. Hypertension. 1995;26:112.PubMedGoogle Scholar
  852. 852.
    Kamper AL, Nielsen AH. Uricosuric effect of losartan in patients with renal transplants. Transplantation. 2001;72:671.PubMedGoogle Scholar
  853. 853.
    Ka T, Inokuchi T, Tsutsumi Z, et al. Effects of fenofibrate/losartan combination on the plasma concentration and urinary excretion of purine bases. Int J Clin Pharmacol Ther. 2006;44:22.PubMedGoogle Scholar
  854. 854.
    Shohinfor S, Simpson RI, Carides AD, et al. Safety of losartan in hypertensive patients with thiazide-induced hyperuricemia. Kidney Int. 1999;56:1879.Google Scholar
  855. 855.
    Alderman M, Alyer KJ. Uric acid: role in cardiovascular disease and effects of losartan. Curr Med Res Opin. 2004;20:369.PubMedGoogle Scholar
  856. 856.
    Smith LH. The medical aspects of urolithiasis: an overview. J Urol. 1989;141:707.PubMedGoogle Scholar
  857. 857.
    Wilson DM. Clinical and laboratory approaches for evaluation of nephrolithiasis. J Urol. 1989;141:770.PubMedGoogle Scholar
  858. 858.
    Hosking DH, Erickson SB, van den Berg CJ, et al. The stone clinic effect in patients with idiopathic calcium urolithiasis. J Urol. 1963;130:1115.Google Scholar
  859. 859.
    Burns JR, Finlayson B. Strategies for the medical management of patients with urinary stone disease. Monogr Urol. 1981;2:198.Google Scholar
  860. 860.
    Ettinger B. Does hyperuricosuria play a role in calcium oxalate lithiasis? J Urol. 1989;141:738.PubMedGoogle Scholar
  861. 861.
    Andres A, Praga M, Bello I, et al. Hematuria due to hypercalciuria and hyperuricosuria in adult patients. Kidney Int. 1989;36:96.PubMedGoogle Scholar
  862. 862.
    Zechner O, Pfluger H. Oral purine loading for evaluation of uric acid excretion in patients with urinary calculi. Invest Urol. 1980;18:115.PubMedGoogle Scholar
  863. 863.
    Zechner O, Pfluger H, Scheiber V. Idiopathic uric acid lithiasis: epidemiologic and metabolic aspects. J Urol. 1982;128:1219.PubMedGoogle Scholar
  864. 864.
    Yu TF. Milestones in the treatment of gout. Am J Med. 1974;56:676.PubMedGoogle Scholar
  865. 865.
    Fam AG. Gout, diet and the insulin resistance syndrome. J Rheumatol. 2002;29:1350.PubMedGoogle Scholar
  866. 866.
    Fam AG. Gout, excess calories, purines, and beyond. Response to a urate-lowering diet. J Rheumatol. 2005;32:773.PubMedGoogle Scholar
  867. 867.
    Choi HK, Atkinson K, Karlson EW, et al. Purine-rich foods, dairy and protein intakes, and the risk of gout in men. N Engl J Med. 2004;350:1093.PubMedGoogle Scholar
  868. 868.
    Snaith M. Gout and alcohol. Rheumatology. 2004;43:1208.PubMedGoogle Scholar
  869. 869.
    Rodnan GP. The pathogenesis of Aldermanic gout: procatarctic role of fluctuations in serum urate concentrations in gouty arthritis provoked by feast and alcohol. Arthritis Rheum. 1980;23:737.Google Scholar
  870. 870.
    Lieber CS, Jones DP, Losowsky MS, Davison CS. Interrelation of uric acid and ethanol metabolism in man. J Clin Invest. 1963;41:1863.Google Scholar
  871. 871.
    Lin JL, Huang PT. Blood lead stores and urate excretion in men with chronic renal disease. J Rheumatol. 1994;21:705.PubMedGoogle Scholar
  872. 872.
    Gibson T, Rodgers AV, Simmonds HA, et al. A controlled study of diet in patients with gout. Ann Rheum Dis. 1983;42:123.PubMedGoogle Scholar
  873. 873.
    Gibson T, Rodgers AV, Simmonds HA, Toseland P. Beer drinking and its effect on uric acid. Br J Rheumatol. 1984;23:203.PubMedGoogle Scholar
  874. 874.
    Choi HK, Atkinson K, Karlson EW, et al. Alcohol intake and risk of incident gout in men: a prospective study. Lancet. 2004;363:1277.PubMedGoogle Scholar
  875. 875.
    Moriwaki Y, Ka T, Takahashi S, et al. Effect of beer ingestion on the plasma concentrations of purine bases: one-month study. Nucleosides Nucleotides Nucleic Acids. 2006;25:1083.PubMedGoogle Scholar
  876. 876.
    Ka T, Moriwaki Y, Takahashi S, et al. Effects of long-term beer ingestion on plasma concentrations and urinary excretion of purine bases. Horm Metab Res. 2005;37:641.PubMedGoogle Scholar
  877. 877.
    Eastmond CJ, Garton M, Robins S, Riddock S. The effects of alcoholic beverages on urate metabolism in gout sufferers. Br J Rheumatol. 1995;34:756.PubMedGoogle Scholar
  878. 878.
    Rodgers AV, Gibson T, Simmonds HA, Toseland P. The effect of beer ingestion on plasma and urine uric acid in gout and normouricaemic subjects. Adv Exp Med Biol. 1984;165 Part A:327.Google Scholar
  879. 879.
    Tofler OB, Woodings TL. A 13-year follow-up of social drinkers. Med J Aust. 1981;2:41.Google Scholar
  880. 880.
    Saker MB, Tofler OB, Burvill MJ, Reilly KA. Alcohol consumption and gout. Med J Aust. 1967;1:1213.PubMedGoogle Scholar
  881. 881.
    Choi HK, Curhan G. Beer, liquor, and wine consumption and serum uric acid levels - The Third National Health and Nutrition Examination Survey. Arthritis Rheum. 2004;50(Suppl):S480.Google Scholar
  882. 882.
    Choi HK, Lin S, Curhan G. Intake of purine-rich foods, protein and dairy products and relationship to serum levels of uric acid. The Third National Health and Nutrition Examination Survey. Arthritis Rheum. 2005;52:283.PubMedGoogle Scholar
  883. 883.
    Choi HK, Curhan G. Alcohol and gout. Am J Med. 2007;120:e5.PubMedGoogle Scholar
  884. 884.
    Miao Z, Li C, Chen Y, et al. Dietary and lifestyle changes associated with high prevalence of hyperuricemia and gout in the Shandong coastal cities of eastern China. J Rheumatol. 2008;35:1859.PubMedGoogle Scholar
  885. 885.
    Mineo I, Kamiya H, Tsukuda A. Practical strategies for lifestyle modification in people with hyperuricemia and gout treatment through diet, physical activity, and reduced alcohol consumption. Nippon Rinsho. 2008;66:736.PubMedGoogle Scholar
  886. 886.
    Friedman JE, Dallal RM, Lard JL. Gouty attacks occur frequently in postoperative gastric bypass patients. Surg Obes Relat Dis. 2008;4:11.PubMedGoogle Scholar
  887. 887.
    Rush Jr RM. Gout and the postoperative bariatric surgery patient. Surg Obes Relat Dis. 2008;4:14.PubMedGoogle Scholar
  888. 888.
    Saag KG, Choi HK. Epidemiology, risk factors, and lifestyle modifications in gout. Arthritis Res Ther. 2006;8 Suppl 1:S2.PubMedGoogle Scholar
  889. 889.
    Schlesinger N. Dietary factors and hyperuricaemia. Curr Pharm Res. 2005;11:4133.Google Scholar
  890. 890.
    Antozzi P, Soto F, Arias F, et al. Development of acute gouty attack in the morbidly obese population after bariatric surgery. Obes Surg. 2005;15:405.PubMedGoogle Scholar
  891. 891.
    Choi HK, Atkinson K, Karlson EW, Curhan G. Obesity, weight change, hypertension, diuretic use, and risk of gout in men: the Health Professional’s Follow-up Study. Arch Intern Med. 2005;165:742.PubMedGoogle Scholar
  892. 892.
    Tipene-Leach D, Pahau H, Joseph N, et al. Insulin resistance in a rural Maori community. N Z Med J. 2004;117:U1208.PubMedGoogle Scholar
  893. 893.
    Barskova VG, Eliseev MS, Nasonov EL, et al. Insulin resistance syndrome in patients with gout and its influence on formation of clinical characteristics of the disease. Ter Arkh. 2004;76:51.PubMedGoogle Scholar
  894. 894.
    Lyu LC, Hsu CY, Yeh CY, et al. A case–control study of the association of diet and obesity with gout in Taiwan. Am J Clin Nutr. 2003;78:690.PubMedGoogle Scholar
  895. 895.
    Chen SY, Chen CL, Shen ML, Kamatani N. Trends in the manifestations of gout in Taiwan. Rheumatology. 2003;42:1529.PubMedGoogle Scholar
  896. 896.
    Takahashi S, Moriwaki Y, Tsutsumi Z, et al. Increased visceral fat accumulation further aggravates the risk of insulin resistance in gout. Metabolism. 2001;50:393.PubMedGoogle Scholar
  897. 897.
    Dessein PH, Shipton EA, Stanwix AE, et al. Beneficial effects of weight loss associated with moderate calorie/carbohydrate restriction, and increased proportional intake of protein and unsaturated fat on serum urate and lipoprotein levels in gout: a pilot study. Ann Rheum Dis. 2000;59:539.PubMedGoogle Scholar
  898. 898.
    Iwatani M, Wasada T, Iwamoto Y, Kamatani N. Insulin sensitizer and urate metabolism. Nippon Rinsho. 2000;58:439.Google Scholar
  899. 899.
    Vague J. The degree of masculine differentiation of obesities: a factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculus disease. Nutrition. 1999;15:89.PubMedGoogle Scholar
  900. 900.
    Tikly M, Bellingan A, Lincoln D, Russell A. Risk factors for gout: a hospital-based study in urban black South Africans. Rev Rhum Engl Ed. 1998;65:225.PubMedGoogle Scholar
  901. 901.
    Takahashi S, Yamamoto T, Tsutsumi Z, et al. Close correlations between visceral fat accumulation and uric acid metabolism in healthy men. Metabolism. 1997;46:1162.PubMedGoogle Scholar
  902. 902.
    Takahashi S, Yamamoto T, Tsutsumi Z, et al. Increased visceral fat accumulation in patients with primary gout. Adv Exp Med Biol. 2000;486:131.PubMedGoogle Scholar
  903. 903.
    Williams PT. Effects of diet, physical activity and performance and body weight on incident gout in ostensibly healthy, vigorously active men. Am J Clin Nutr. 2008;87:1480.PubMedGoogle Scholar
  904. 904.
    Nan H, Qiao O, Soderberg S, et al. Serum uric acid and components of the metabolic syndrome in non-diabetic populations in Mauritian Indians and Creoles and in Chinese in Quingdao, China. Metab Syndr Relat Disord. 2008;6:47.PubMedGoogle Scholar
  905. 905.
    Chang HY, Pan WH, Yeh WT, Tsai KS. Hyperuricemia and gout in Taiwan: results from the Nutritional and Health Survey in Taiwan (1993–96). J Rheumatol. 2001;28:1640.PubMedGoogle Scholar
  906. 906.
    No authors listed. Metabolic syndrome in gout. Vestn Akad Med Nauk 2008;6:29.Google Scholar
  907. 907.
    Muntner P, Srinvasan S, Menke A, et al. Impact of childhood metabolic syndrome components on the risk of elevated uric acid in adulthood: the Bogalusa Heart Study. Am J Med Sci. 2008;335:332.PubMedGoogle Scholar
  908. 908.
    Puig JG, Martinez MA. Hyperuricemia, gout and the metabolic syndrome. Curr Opin Rheumatol. 2008;20:187.PubMedGoogle Scholar
  909. 909.
    Virsaladze DK, Tetradze W, Dzhavashvili LV, et al. Levels of uric acid in serum in patients with metabolic syndrome. Georgian Med News. 2007;146:35.PubMedGoogle Scholar
  910. 910.
    Novak S, Melkonian AK, Patel PA, et al. Metabolic syndrome-related conditions among people with and without gout: prevalence and resource use. Curr Med Res Opin. 2007;23:623.PubMedGoogle Scholar
  911. 911.
    Choi HK, Ford ES, Li C, Curhan G. Prevalence of the metabolic syndrome in patients with gout: the Third National Health and Nutrition Examination Survey. Arthritis Rheum. 2007;57:109.PubMedGoogle Scholar
  912. 912.
    Chen SY, Chen CL, Shen ML. Manifestations of metabolic syndrome associated with male gout in different age strata. Clin Rheumatol. 2007;26:1453.PubMedGoogle Scholar
  913. 913.
    Vazez-Mellado J, Garcia CG, Vazquez SG, et al. Metabolic syndrome and ischemic heart disease in gout. J Clin Rheumatol. 2004;10:105.Google Scholar
  914. 914.
    Korochina IE, Bagirova GG. Metabolic syndrome and rheumatic diseases. Ter Arkh. 2006;78:39.PubMedGoogle Scholar
  915. 915.
    Rho YH, Choi SJ, Lee YH, et al. The prevalence of metabolic syndrome in patients with gout: a multicenter study. J Korean Med Sci. 2005;20:1029.PubMedGoogle Scholar
  916. 916.
    Iannello S, Cavaliere G, Ferro G, et al. Tophaceous gout in plurimetabolic syndrome. Minerva Med. 1998;89:419.PubMedGoogle Scholar
  917. 917.
    Gresser U, Gathof BS, Gross M. Benzbromarone and fenofibrate are lipid lowering and uricosuric: a possible key to metabolic syndrome? Adv Exp Med Biol. 1994;370:87.PubMedGoogle Scholar
  918. 918.
    Katzmann K. The metabolic syndrome. Z Arztl Fortbild (Jena). 1991;85:651.Google Scholar
  919. 919.
    Knappe G. Obesity – pacemaker of the metabolic syndrome. Z Arztl Fortbild (Jena). 1992;86:891.Google Scholar
  920. 920.
    Choi JW, Ford ES, Gao X, Choi HK. Sugar-sweetened soft drinks, diet soft drinks, and serum uric acid level: the Third National Health and Nutrition Examination Survey. Arthritis Rheum. 2008;59:109.PubMedGoogle Scholar
  921. 921.
    Choi HK, Curhan G. Soft drinks, fructose consumption, and the risk of gout in men: perspective cohort study. BMJ. 2008;336:309.PubMedGoogle Scholar
  922. 922.
    Messerli FH, Frohlich ED, Dreslinski GR, et al. Serum uric acid in essential hypertension: an indicator of renal vascular involvement. Ann Intern Med. 1980;93:817.PubMedGoogle Scholar
  923. 923.
    Chobanian AV, Bakris GL, Black HR, et al. The seventh report of the Joint National Committee on prevention, detection, and treatment of high blood pressure. The JNC 7 report. JAMA. 2003;289:2560.PubMedGoogle Scholar
  924. 924.
    Vaccarino V, Krumholz HM. Risk factors for cardiovascular disease: one down, many more to evaluate. Ann Intern Med. 1999;131:62.PubMedGoogle Scholar
  925. 925.
    Alper Jr AB, Chen W, Yau L, et al. Childhood uric acid predicts adult blood pressure: the Bogalusa Heart Study. Hypertension. 2005;45:34.PubMedGoogle Scholar
  926. 926.
    Mellen PB, Bleyer AJ, Erlinger TP, et al. Serum uric acid predicts incident hypertension in a biethnic cohort: the Atherosclerosis Risk in Communities Study. Hypertension. 2006;48:1037.PubMedGoogle Scholar
  927. 927.
    Perlstein TS, Gumieniak O, Williams GH, et al. Uric acid and the development of hypertension: the Normative Aging Study. Hypertension. 2006;48:1031.PubMedGoogle Scholar
  928. 928.
    Selby JV, Friedman GO, Quesenberry Jr CP. Precursors of essential hypertension: pulmonary function, heart rate, uric acid, serum cholesterol, and other serum chemistries. Am J Epidemiol. 1990;131:1017.PubMedGoogle Scholar
  929. 929.
    Sundstrom J, Sullivan L, D’Agostino RB, et al. Relations of serum uric acid to longitudinal blood pressure tracking and hypertension incidence. Hypertension. 2005;45:28.PubMedGoogle Scholar
  930. 930.
    Feig DL, Johnson RJ. Hyperuricemia in childhood primary hypertension. Hypertension. 2003;42:247.PubMedGoogle Scholar
  931. 931.
    Mazzali M, Hughes J, Kim YG, et al. Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension. 2001;38:1101.PubMedGoogle Scholar
  932. 932.
    Mazzali M, Kanellis J, Han L, et al. Hyperuricemia induces a primary renal arteriolopathy in rats by a blood pressure-independent mechanism. Am J Physiol Renal Physiol. 2002;282:F991.PubMedGoogle Scholar
  933. 933.
    Johnson RJ, Segal MS, Srinivas T, et al. Essential hypertension, progressive renal disease, and uric acid: a pathogenetic link? J Am Soc Nephrol. 2005;16:1909.PubMedGoogle Scholar
  934. 934.
    Sanchez-Lozada LG, Tapia E, Lopez-Molina R, et al. Effects of acute and chronic L-arginine treatment in experimental hyperuricemia. Am J Physiol Renal Physiol. 2007;292:F1238.PubMedGoogle Scholar
  935. 935.
    Gruskin AB. The adolescent with essential hypertension. Am J Kidney Dis. 1985;6:86.PubMedGoogle Scholar
  936. 936.
    Erdogan D, Gullu H, Caliskan M, et al. Relationship of serum uric acid to measures of endothelial function and atherosclerosis in healthy adults. Int J Clin Pract. 2005;59:1276.PubMedGoogle Scholar
  937. 937.
    Saito I, Saruta T, Kondo K, et al. Serum uric acid and the renin-angiotensin system in hypertension. J Am Geriatr Soc. 1978;26:241.PubMedGoogle Scholar
  938. 938.
    Zoccali C, Maio R, Mallamaci F, et al. Uric acid and endothelial dysfunction in essential hypertension. J Am Soc Nephrol. 2006;17:1466.PubMedGoogle Scholar
  939. 939.
    Doehner W, Schoene N, Rauchhaus M, et al. Effects of xanthine oxidase inhibition with allopurinol on endothelial function and peripheral blood flow in hyperuricemic patients with chronic heart failure: results from 2 placebo-controlled studies. Circulation. 2002;105:2619.PubMedGoogle Scholar
  940. 940.
    Farquharson CA, Butler R, Hill A, et al. Allopurinol improves endothelial dysfunction in chronic heart failure. Circulation. 2002;106:221.PubMedGoogle Scholar
  941. 941.
    Mercure G, Vitale C, Cerquetani E, et al. Effect of hyperuricemia upon endothelial function in patients at increased cardiovascular risk. Am J Cardiol. 2004;94:932.Google Scholar
  942. 942.
    Feig DL, Soletsky B, Johnson RJ. Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: a randomized trial. JAMA. 2008;300:924.PubMedGoogle Scholar
  943. 943.
    Sanchez-Lozada LG, Tapia E, Soto V, et al. Treatment with the xanthine oxidase inhibitor: Febuxostat lowers uric acid and alleviates systemic and glomerular hypertension in experimental hyperuricaemia. Nephrol Dial Transplant. 2008;23:1179.PubMedGoogle Scholar
  944. 944.
    Sanchez-Lozada LG, Tapia E, Bautista-Garcia P, et al. Effects of Febuxostat on metabolic and renal alterations in rats with fructose-induced metabolic syndrome. Am J Physiol Renal Physiol. 2008;294:F710.PubMedGoogle Scholar
  945. 945.
    George J, Carr E, Davies J, et al. High-dose allopurinol improves endothelial function by profoundly reducing oxidative stress and not by lowering uric acid. Circulation. 2006;114:2508.PubMedGoogle Scholar
  946. 946.
    Ishihara Y, Sekine M, Hatano A, Shimamoto N. Sustained contraction and endothelial dysfunction induced by reactive oxygen species in porcine coronary artery. Biol Pharm Bull. 2008;31:1667.PubMedGoogle Scholar
  947. 947.
    Sanchez-Lozada LG, Soto V, Tapia E, et al. Role of oxidative stress in the renal abnormalities induced by experimental hyperuricemia. Am J Physiol Renal Physiol. 2008;295:F1431.PubMedGoogle Scholar
  948. 948.
    Gersch C, Palii SP, Kim KM, et al. Inactivation of nitric oxide by uric acid. Nucleosides Nucleotides Nucleic Acids. 2008;27:967.PubMedGoogle Scholar
  949. 949.
    Neaton JD, Grimm Jr RH, Prineas RJ, et al. Treatment of Mild Hypertension Study: final results. Treatment of Mild Hypertension Study Research Group. JAMA. 1993;270(713):962.Google Scholar
  950. 950.
    Ames BN, Cathcart R, Schwiers E, Hochstein P. Uric acid provides antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci USA. 1981;78:6858.PubMedGoogle Scholar
  951. 951.
    Proctor P. Similar functions of uric acid and ascorbate in man? Nature. 1970;228:868.PubMedGoogle Scholar
  952. 952.
    Johnson RJ, Gaucher EA, Sautin YY, et al. The planetary biology of ascorbate and uric acid and their relationship with the epidemic of obesity and cardiovascular disease. Med Hypotheses. 2008;71:22.PubMedGoogle Scholar
  953. 953.
    Orawan E. The origin of man. Nature. 1955;175:683.Google Scholar
  954. 954.
    Corry DB, Eslami P, Yamamoto K, et al. Uric acid stimulates vascular smooth muscle cell proliferation and oxidative stress via the vascular renin-angiotensin system. J Hypertens. 2008;26:269.PubMedGoogle Scholar
  955. 955.
    Brown CM, Dulloo AG, Yepuri G, Montani JP. Fructose ingestion acutely elevates blood pressure in healthy young humans. Am J Physiol Regul Integr Comp Physiol. 2008;294:R730.PubMedGoogle Scholar
  956. 956.
    Wexler BC, Greenberg BP. Effect of increased serum urate levels on virgin rats with no arteriosclerosis versus breeder rats with preexisting arteriosclerosis. Metabolism. 1977;26:1309.PubMedGoogle Scholar
  957. 957.
    Wexler BC. Allantoxamide-induced myocardial necrosis in Sprague–Dawley vs spontaneously hypertensive rats. Proc Soc Exp Biol Med. 1982;170:476.PubMedGoogle Scholar
  958. 958.
    Kang DH, Park SK, Lee IK, Johnson RJ. Uric acid-induced C-reactive protein expression: implication on cell proliferation and nitric oxide production of human vascular cells. J Am Soc Nephrol. 2005;16:3553.PubMedGoogle Scholar
  959. 959.
    Toma I, Kang JJ, Meer EJ, Peti-Peterdi J. Uric acid triggers renin release via a macula densa-dependent pathway. J Am Soc Nephrol. 2007;18:156A.Google Scholar
  960. 960.
    Khosla UM, Zharikov S, Finch JL, et al. Hyperuricemia induces endothelial dysfunction. Kidney Int. 2005;67:1739.PubMedGoogle Scholar
  961. 961.
    Talaat KM, EI-Sheikh AR. The effect of mild hyperuricemia on urinary transforming growth factor beta and the progression of chronic kidney disease. Am J Nephrol. 2007;27:435.PubMedGoogle Scholar
  962. 962.
    Masuo K, Kawaguchi H, Mikami H, et al. Serum uric acid and plasma norepinephrine concentrations predict subsequent weight gain and blood pressure elevation. Hypertension. 2003;42:474.PubMedGoogle Scholar
  963. 963.
    Ouyang X, Cerillo P, Sautin Y, et al. Fructose consumption as a risk factor for non-alcohol fatty liver disease. J Hepatol. 2008;48:993.PubMedGoogle Scholar
  964. 964.
    Perez-Pozo SE, Schold J, Nakagawa T, et al. Int J Obesity. 2009;354.Google Scholar
  965. 965.
    Feig DL, Soletsky B, Johnson RJ. Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: a randomized trial. JAMA. 2009;301:270.Google Scholar
  966. 966.
    Cannon PJ, Stason WB, Demartini FE, et al. Hyperuricemia in primary and renal hypertension. N Engl J Med. 1966;275:457.PubMedGoogle Scholar
  967. 967.
    Perlstein TS, Gumienieah O, Williams GH, et al. Uric acid and the development of hypertension: the Normative Aging Study. Hypertension. 2006;48:1031.PubMedGoogle Scholar
  968. 968.
    Krishnan E, Svendsen K, Neaton JD, et al. MRFIT Research Group. Long-term cardiovascular mortality among middle-aged men with gout. Arch Intern Med. 2008;168:1104.PubMedGoogle Scholar
  969. 969.
    Baker JF, Krishnan E, Chen L, Schumacher HR. Serum uric acid and cardiovascular disease: recent developments, and where do they leave us? Am J Med. 2005;118:816.PubMedGoogle Scholar
  970. 970.
    Karagiannis A, Mikhailidis DP, Tzimalos K, et al. Serum uric acid as an independent prediction of early death after acute stroke. Circ J. 2007;71:1120.PubMedGoogle Scholar
  971. 971.
    Syamala S, Li J, Shankar A. Association between serum uric acid and prehypertension among US adults. J Hypertens. 2007;25:1583.PubMedGoogle Scholar
  972. 972.
    Viazzi F, Parodi D, Leoncini G, et al. Serum uric acid and target organ damage in primary hypertension. Hypertension. 2005;45:991.PubMedGoogle Scholar
  973. 973.
    Iwashima Y, Horio T, Kamide K, et al. Uric acid, left ventricular mass index, and risk of cardiovascular disease in essential hypertension. Hypertension. 2006;47:195.PubMedGoogle Scholar
  974. 974.
    Sanchez-Lozada LG, Tapia E, Santamaria J, et al. Mild hyperuricemia induces glomerular hypertension in normal and remnant kidney rats. Kidney Int. 2005;67:237.PubMedGoogle Scholar
  975. 975.
    Kang DH, Nakagawa T, Feng L, et al. A role for uric acid in the progression of renal disease. J Am Soc Nephrol. 2002;13:2888.PubMedGoogle Scholar
  976. 976.
    Iseki K, Oshira S, Tozawa M, et al. Significance of hyperuricemia on the early detection of renal failure in a cohort of screened subjects. Hypertens Res. 2001;24:691.PubMedGoogle Scholar
  977. 977.
    Siu YP, Leung KT, Tong MK, et al. Use of allopurinol in slowing the progression of renal disease through its ability to lower serum uric acid level. Am J Kidney Dis. 2006;47:51.PubMedGoogle Scholar
  978. 978.
    Weimert NA, Tanke WF, Sims JJ. Allopurinol as a cardioprotectant during coronary artery bypass graft surgery. Ann Pharmacother. 2003;37:1708.PubMedGoogle Scholar
  979. 979.
    Butler R, Morris AD, Belch JJF, et al. Allopurinol normalizes endothelial dysfunction in type 2 diabetics with mild hypertension. Hypertension. 2000;35:746.PubMedGoogle Scholar
  980. 980.
    Nakagawa T, Kang DH, Feig D, et al. Unearthing uric acid: an ancient factor with recently found significance in renal and cardiovascular disease. Kidney Int. 2006;69:1722.PubMedGoogle Scholar
  981. 981.
    Nieto FJ, Iribarren C, Gross MD, et al. Uric acid and serum antioxidant capacity: a reaction to atherosclerosis? Atherosclerosis. 2000;148:131.PubMedGoogle Scholar
  982. 982.
    Zweir JL, Kuppusamy P, Lutty GA. Measurement of endothelial cell free radical generation: evidence for a central mechanism of free radical injury in postischemic tissue. Proc Natl Acad Sci USA. 1988;85:4046.Google Scholar
  983. 983.
    Strazzulo P, Puig JG. Uric acid and oxidative stress: relative impact on cardiovascular risk? Nutr Metab Cardiovasc Dis. 2007;17:409.Google Scholar
  984. 984.
    Roubenoff R, Klag MJ, Mead LA, et al. Incidence and risk factors for gout in white men. JAMA. 1991;266:3004.PubMedGoogle Scholar
  985. 985.
    Chen SY, Shen ML. Juvenile gout in Taiwan associated with family history and overweight. J Rheumatol. 2007;34:2308.PubMedGoogle Scholar
  986. 986.
    Glynn RJ, Campion EW, Silbert JE. Trends in serum uric acid levels 1961–1980. Arthritis Rheum. 1983;26:87.PubMedGoogle Scholar
  987. 987.
    Rathmann W, Funkhouser E, Dyer AR, Roseman JM. Relations of hyperuricemia with the various components of the insulin resistance syndrome in young black and white adults: the Cardia Study. Coronary Artery Risk Development in Young Adults. Ann Epidemiol. 1998;8:250.PubMedGoogle Scholar
  988. 988.
    Lee J, Sparrow D, Vokonas PS, et al. Uric acid and coronary heart disease risk: evidence for a role of uric acid in the obesity-insulin resistance syndrome. The Normative Aging Study. Am J Epidemiol. 1995;142:288.PubMedGoogle Scholar
  989. 989.
    Yamashita S, Matsuzawa Y, Tokunaga K, et al. Studies on the impaired metabolism of uric acid in obese subjects: marked reduction of renal urate excretion and its improvement by a low-calorie diet. Int J Obes. 1986;10:255.PubMedGoogle Scholar
  990. 990.
    Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on detection, education, and treatment of high blood cholesterol in adults {adult treatment panel 111) final report. Circulation. 2002;106:3143.<