Skip to main content

Part of the book series: Springer Series on Touch and Haptic Systems ((SSTHS))

Abstract

Haptic interfaces generate the sense of touch in the form of force or tactile feedback and allow us to touch and manipulate objects either within a virtual environment or in a real world through a slave of a teleoperated system, such as for surgical robotics. There has been considerable amount of research on the haptic technology, which brought it into computer games, surgical simulators, mobile phones etc. A closer investigation of these devices and studies on their performance evaluation shows that type of evaluations, aim of methods and performance metrics vary considerably depending on the device. We have, therefore, reviewed the evaluation methods in the literature that have been applied to haptic devices. In this chapter, first, commercially available haptic interfaces and their application areas are reviewed. Then, haptic interface evaluation studies in the literature are discussed and categorized into two groups: physical and psychophysical evaluation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, R.J., Hannaford, B.: Stable haptic interaction with virtual environments. IEEE Trans. Robot. Autom. 15(3), 465–474 (1999)

    Article  Google Scholar 

  2. Aesthesis: Aphee-4x. http://www.aesthesis.net/aphee-4x.html (2010)

  3. Ahlberg, G., Enochsson, L., Gallagher, A.G., Hedman, L., Hogman, C., McClusky, D.A. III, Ramel, S., Smith, C.D., Arvidsson, D.: Proficiency-based virtual reality training significantly reduces the error rate for residents during their first 10 laparoscopic cholecystectomies. Am. J. Surg. 193(6), 797–804 (2007)

    Article  Google Scholar 

  4. Avizzano, C.A., Solis, J., Frisoli, A., Bergamasco, M.: Motor learning skill experiments using haptic interface capabilities. In: Proc. of 11th IEEE International Workshop on Robot and Human Interactive Communication, pp. 198–203 (2002)

    Google Scholar 

  5. Bajka, M., Tuchschmid, S., Streich, M., Fink, D., Szekely, G., Harders, M.: Evaluation of a new virtual-reality training simulator for hysteroscopy. Surg. Endosc. 23(9), 2026–2033 (2009)

    Article  Google Scholar 

  6. Basdogan, C., Ho, C., Srinivasan, M.A., Slater, M.: An experimental study on the role of touch in shared virtual environments. ACM Trans. Comput.-Hum. Interact. 7(4), 443–460 (2000)

    Article  Google Scholar 

  7. Bergamasco, M., Frisoli, A., Avizzano, C.: Exoskeletons as man-machine interface systems for teleoperation and interaction in virtual environments. In: Ferre, M., Buss, M., Aracil, R., Melchiorri, C., Balaguer, C. (eds.) Advances in Telerobotics. Springer Tracts in Advanced Robotics, vol. 31, pp. 61–76. Springer, Berlin (2007)

    Chapter  Google Scholar 

  8. Berkelman, P.J., Hollis, R.L.: Lorentz magnetic levitation for haptic interaction: device design, performance, and integration with physical simulations. Int. J. Robot. Res. 19(7), 644–667 (2000)

    Article  Google Scholar 

  9. Berkley, J., Vollenweider, M., Kim, S.: Haptic systems employing force feedback. Patent Pub. No.:WO/2008/070584 (2008)

    Google Scholar 

  10. Botturi, D., Castellani, A., Moschini, D., Fiorini, P.: Performance evaluation of task control in teleoperation. In: Proc. of IEEE International Conference on Robotics and Automation (ICRA), vol. 4, pp. 3690–3695 (2004). doi:10.1109/ROBOT.2004.1308833

  11. Brooks, T.L.: Telerobotic response requirements. In: IEEE International Conference on Systems, Man and Cybernetics, pp. 113–120 (1990)

    Google Scholar 

  12. Butterfly Haptics, LLC: Maglev 200. http://butterflyhaptics.com/products/ (2012)

  13. CAE Healthcare: EndoscopyVR. http://www.cae.com (2012)

  14. Cavusoglu, M.C., Feygin, D., Tendick, F.: A critical study of the mechanical and electrical properties of the phantom haptic interface and improvements for high-performance control. Presence: Teleoperators Virtual Environ. 11(6), 555–568 (2002). doi:10.1162/105474602321050695

    Article  Google Scholar 

  15. Chapuis, D.: Application of ultrasonic motors to MR-compatible haptic interfaces. PhD thesis, EPFL, No. 4317 (2009)

    Google Scholar 

  16. Chun, K., Verplank, B., Barbagli, F., Salisbury, K.: Evaluating haptics and 3d stereo displays using Fitts’ law. In: Proc. of the 3rd IEEE Workshop on HAVE, pp. 53–58 (2004)

    Google Scholar 

  17. Colgate, J.E., Brown, J.M.: Factors affecting the Z-width of a haptic display. In: IEEE Int. Conf. Robotics and Automation, pp. 3205–3210 (1994)

    Google Scholar 

  18. CyberGlove Systems LLC: CyberTouch. http://www.cyberglovesystems.com/ (2012)

  19. de Visser, H., Passenger, J., Conlan, D., Russ, C., Hellier, D., Cheng, M., Acosta, O., Ourselin, S., Salvado, O.: Developing a next generation colonoscopy simulator. Int. J. Image Graph. 10(2), 203–217 (2010)

    Article  MathSciNet  Google Scholar 

  20. Durlach, N.I., Delhorne, L.A., Wong, A., Ko, W.Y., Rabinowitz, W.M., Hollerbach, J.: Manual discrimination and identification of length by the finger-span method. Percept. Psychophys. 46(1), 29–38 (1989)

    Article  Google Scholar 

  21. Ellis, R., Ismaeil, O., Lipsett, M.: Design and evaluation of a high-performance haptic interface. Robotica 14, 321–327 (1996)

    Article  Google Scholar 

  22. Eppinger, S.D.: Modeling robot dynamic performance for endpoint force control. PhD thesis, MIT (1988)

    Google Scholar 

  23. Faulring, E.L., Colgate, J.E., Peshkin, M.A.: The cobotic hand controller: design, control and performance of a novel haptic display. Int. J. Robot. Res. 25, 1099–1119 (2006)

    Article  Google Scholar 

  24. Fitts, P.M.: The information capacity of the human motor system in controlling the amplitude of movement. J. Exp. Psychol. 47, 381–391 (1954)

    Article  Google Scholar 

  25. Force Dimension: Omega. http://www.forcedimension.com/ (2012)

  26. Frisoli, A., Bergamasco, M.: Experimental identification and evaluation of performance of a 2 dof haptic display. In: Proc. of IEEE International Conference on Robotics and Automation, vol. 3, pp. 3260–3265 (2003)

    Google Scholar 

  27. Gassert, R., Moser, R., Burdet, E., Bleuler, H.: MRI/fMRI-compatible robotic system with force feedback for interaction with human motion. IEEE/ASME Trans. Mechatron. 11(2), 216–224 (2006)

    Article  Google Scholar 

  28. Guerraz, A., Loscos, C., Widenfeld, H.R.: How to use physical parameters coming from the haptic device itself to enhance the evaluation of haptic benefits in user interface? In: Proc. of Eurohaptics’03 (2003)

    Google Scholar 

  29. Hagen, M., Meehan, J., Inan, I., Morel, P.: Visual clues act as a substitute for haptic feedback in robotic surgery. Surg. Endosc. 22, 1505–1508 (2008). doi:10.1007/s00464-007-9683-0

    Article  Google Scholar 

  30. Hagn, U., Konietschke, R., Tobergte, A., Nickl, M., Joerg, S., Kuebler, B., Passig, G., Groeger, M., Froehlich, F., Seibold, U., Le-Tien, L., Albu-Schaeffer, A., Nothhelfer, A., Hacker, F., Grebenstein, M., Hirzinger, G.: DLR MiroSurge: a versatile system for research in endoscopic telesurgery. Int. J. Comput. Assisted Radiol. Surg. 5(2), 183–193 (2010)

    Article  Google Scholar 

  31. Hannaford, B., Ryu, J.: Time domain passivity control of haptic interfaces. IEEE Trans. Robot. Autom. 18(1), 1–10 (2002)

    Article  Google Scholar 

  32. Hannaford, B., Wood, L., McAffee, D., Zak, H.: Performance evaluation of a six axis generalized force reflecting teleoperator. IEEE Trans. Syst. Man Cybern. 21, 620–633 (1991)

    Article  Google Scholar 

  33. Hansen Medical, Inc.: Sensei X Robotic Catheter System. http://www.hansenmedical.com/ (2012)

  34. HAPTION: Virtuose 6D35-45. http://www.haption.com/ (2012)

  35. Harders, M., Barlit, A., Akahane, K., Sato, M., Szkely, G.: Comparing 6dof haptic interfaces for application in 3d assembly tasks. In: Proc. of Eurohaptics’06 (2006)

    Google Scholar 

  36. Harders, M., Bachofen, D., Bajka, M., Grassi, M., Heidelberger, B., Sierra, R., Spaelter, U., Steinemann, D., Teschner, M., Tuchschmid, S., Zatonyi, J., Szekely, G.: Virtual reality based simulation of hysteroscopic interventions. Presence: Teleoperators Virtual Environ. 17(5), 441–462 (2008)

    Article  Google Scholar 

  37. Hayward, V., Astley, O.: Performance measures for haptic interfaces. In: Robotics Research: The 7th International Symposium, pp. 195–207 (1996)

    Google Scholar 

  38. Hayward, V., Gregorio, P., Astley, O., Greenish, S., Doyon, M., Lessard, L., Mcdougall, J., Sinclair, I., Boelen, S., Chen, X., Demers, J.-P., Poulin, J., Benguigui, I., Almey, N., Makuc, B., Zhang, X.: Freedom-7: a high fidelity seven axis haptic device with application to surgical training. In: Lecture Notes in Control and Information Science, vol. 232, pp. 445–456. Springer, Berlin (1997)

    Google Scholar 

  39. Hellier, D., Samur, E., Passenger, J., Spaelter, U., Frimmel, H., Appleyard, M., Bleuler, H., Ourselin, S.: A modular simulation framework for colonoscopy using a new haptic device. In: Proc. of the 16th Medicine Meets Virtual Reality Conference (MMVR), vol. 132, pp. 165–170 (2008)

    Google Scholar 

  40. Hocoma AG: Lokomat®. http://www.hocoma.com/ (2012)

  41. Hollerbach, J.M., Hunter, I.W., Ballantyne, J.: A comparative analysis of actuator technologies for robotics. In: The Robotics Review, vol. 2, pp. 299–342. MIT Press, Cambridge (1992)

    Google Scholar 

  42. Immersion Corp: TouchSense. http://www.immersion.com/products/touchsense-tactile-feedback/ (2012)

  43. Intuitive Surgical: da Vinci Surgical System. http://www.intuitivesurgical.com/ (2012)

  44. Kappers, A.M., Koenderink, J.J., Lichtenegger, I.: Haptic identification of curved surfaces. Percept. Psychophys. 56 (1), 53–61 (1994)

    Article  Google Scholar 

  45. King, C.-H., Culjat, M.O., Franco, M.L., Bisley, J.W., Carman, G.P., Dutson, E.P., Grundfest, W.S.: A multielement tactile feedback system for robot-assisted minimally invasive surgery. IEEE Trans. Haptics 2(1), 52–56 (2009)

    Article  Google Scholar 

  46. Kirkpatrick, A.E., Douglas, S.A.: Application-based evaluation of haptic interfaces. In: Proc. of the 10th Haptic Symposium, p. 32 (2002)

    Google Scholar 

  47. Kitagawa, M., Dokko, D., Okamura, A.M., Yuh, D.D.: Effect of sensory substitution on suture-manipulation forces for robotic surgical systems. J. Thorac. Cardiovasc. Surg. 129(1), 151–158 (2005)

    Article  Google Scholar 

  48. Lawrence, D.A., Pao, L.Y., Salada, M.A., Dougherty, A.M.: Quantitative experimental analysis of transparency and stability in haptic interfaces. In: Proc. of ASME Dynamic Systems and Control Division. DSC, vol. 58, pp. 441–449 (1996)

    Google Scholar 

  49. Lawrence, D.A., Pao, L.Y., Dougherty, A.M., Salada, M.A., Pavlou, Y.: Rate-hardness: a new performance metric for haptic interfaces. IEEE Trans. Robot. Autom. 16(4), 357–371 (2000)

    Article  Google Scholar 

  50. Leskovsky, P., Cooke, T., Ernst, M., Harders, M.: Using multidimensional scaling to quantify the fidelity of haptic rendering of deformable objects. In: Proc. of Eurohaptics, pp. 289–295 (2006)

    Google Scholar 

  51. Logitech: Driving Force GT. http://www.logitech.com/en-us/gaming/wheels (2012)

  52. Massie, T.H., Salisbury, J.K.: The PHANTOM haptic interface: a device for probing virtual objects. In: Proc. of the ASME Winter Annual Meeting, Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (1994)

    Google Scholar 

  53. McAffee, D.A., Fiorini, P.: Hand controller design requirements and performance issues in telerobotics. In: Fifth International Conference on Advanced Robotics, ICAR, vol. 1, pp. 186–192 (1991)

    Google Scholar 

  54. McMahan, W., Gewirtz, J., Standish, D., Martin, P., Kunkel, J.A., Lilavois, M., Wedmid, A., Lee, D.I., Kuchenbecker, K.J.: Tool contact acceleration feedback for telerobotic surgery. IEEE Trans. Haptics 4(3), 210–220 (2011)

    Article  Google Scholar 

  55. Mentice SA (formerly Xitact SA): Xitact IHP. http://www.mentice.com/ (2012)

  56. Mimic Technologies: dV-Trainer. http://www.mimictech.net/ (2012)

  57. MOOG: HapticMaster. http://www.moog.com/products/haptics-robotics/ (2012)

  58. Morrell, J.B., Salisbury, J.K.: Parallel-coupled micro-macro actuators. Int. J. Robot. Res. 17, 773–791 (1998)

    Article  Google Scholar 

  59. MPB Technologies: Freedom7. http://www.mpb-technologies.ca/ (2012)

  60. Murray, A.M., Klatzky, R.L., Khosla, P.K.: Psychophysical characterization and testbed validation of a wearable vibrotactile glove for telemanipulation. Presence: Teleoperators Virtual Environ. 12(2), 156–182 (2003).

    Article  Google Scholar 

  61. Nintendo: Wii Remote. http://www.nintendo.com/wii/ (2012)

  62. Novint Technologies, Inc.: Novint Falcon®

    Google Scholar 

  63. Oakley, I., McGee, M.R., Brewster, S.A., Gray, P.D.: Putting the feel in ‘look and feel’. CHI, pp. 415–422 (2000)

    Google Scholar 

  64. O’Malley, M., Goldfarb, M.: The effect of force saturation on the haptic perception of detail. IEEE/ASME Trans. Mechatron. 7, 280–288 (2002)

    Article  Google Scholar 

  65. Peer, A., Buss, M.: A new admittance-type haptic interface for bimanual manipulations. IEEE/ASME Trans. Mechatron. 13 (2008)

    Google Scholar 

  66. Quanser: HD2. http://www.quanser.com/ (2012)

  67. Ruffaldi, E., Morris, D., Edmunds, T., Barbagli, F., Pai, D.K.: Standardized evaluation of haptic rendering systems. In: Proc. of IEEE Haptic Symposium, pp. 225–232 (2006)

    Google Scholar 

  68. Salisbury, C., Gillespie, R.B., Tan, H., Barbagli, F., Salisbury, J.K.: Effects of haptic device attributes on vibration detection thresholds. In: Proc. of World Haptics’09, pp. 115–120 (2009)

    Google Scholar 

  69. Salisbury, C.M., Gillespie, R.B., Tan, H.Z., Barbagli, F., Salisbury, J.K.: What you can’t feel won’t hurt you: evaluating haptic hardware using a haptic contrast sensitivity function. IEEE Trans. Haptics 4(2), 134–146 (2011)

    Article  Google Scholar 

  70. Samur, E., Flaction, L., Bleuler, H.: Design and evaluation of a novel haptic interface for endoscopic simulation. IEEE Trans. Haptics (2011). doi:10.1109/TOH.2011.70

    Google Scholar 

  71. Samur, E., Santos-Carreras, L., Sengul, A., Rognini, G., Marchesotti, S., Bleuler, H.: Role of haptics in surgical robotics: report on a workshop. http://www.computer.org/portal/web/toh (2011)

  72. Santos-Carreras, L., Beira, R., Sengul, A., Gassert, R., Bleuler, H.: Influence of force and torque feedback on operator performance in a vr-based suturing task. Appl. Bionics Biomech. 7(3), 217–238 (2010)

    Article  Google Scholar 

  73. Semere, W., Kitagawa, M., Okamura, A.M.: Teleoperation with sensor/actuator asymmetry: task performance with partial force feedback. In: Proceedings of the 12th International Conference on Haptic Interfaces for Virtual Environment and Teleoperator Systems, HAPTICS’04, pp. 121–127. IEEE Computer Society, Washington (2004)

    Google Scholar 

  74. Sensable Technologies, Inc.®: PHANTOM Omni®. http://www.sensable.com/ (2012)

  75. Simbionix USA Corporation: GI-BRONCHI Mentor. http://www.simbionix.com/ (2012)

  76. Spaelter, U.: Haptic interface design and control with application to surgery simulation. PhD thesis, EPFL, No. 3529 (2006)

    Google Scholar 

  77. Stocco, L.J., Salcudean, S.E., Sassani, F.: Optimal kinematic design of a haptic pen. IEEE/ASME Trans. Mechatron. 6(3), 210–220 (2001)

    Article  Google Scholar 

  78. Surgical Science Sweden AB: LapSim. http://www.surgical-science.com/ (2012)

  79. Synaptics Inc.: Synaptics Fuse. http://www.synaptics.com/demos/fuse (2012)

  80. Taati, B., Tahmasebi, A.M., Hashtrudi-Zaad, K.: Experimental identification and analysis of the dynamics of a PHANToM premium 1.5A haptic device. Presence: Teleoperators Virtual Environ. 17(4), 327–343 (2008)

    Article  Google Scholar 

  81. Tan, H.: Identification of sphere size using the phantom: towards a set of building blocks for rendering haptic environment. In: ASME Annual Meeting, pp. 197–203 (1997)

    Google Scholar 

  82. Tobergte, A., Passig, G., Kuebler, B., Seibold, U., Hagn, U.A., Froehlich, F.A., Konietschke, R., Joerg, S., Nickl, M., Thielmann, S., Haslinger, R., Groeger, M., Nothhelfer, A., Le-Tien, L., Gruber, R., Albu-Schaeffer, A., Hirzinger, G.: MiroSurge—advanced user interaction modalities in minimally invasive robotic surgery. Presence: Teleoperators Virtual Environ. 19(5, SI), 400–414 (2010)

    Article  Google Scholar 

  83. Ueberle, M., Mock, N., Buss, M.: Vishard10, a novel hyper-redundant haptic interface. In: Proceedings of the 12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, HAPTICS’04, pp. 58–65 (2004)

    Chapter  Google Scholar 

  84. Ueberle, M.W.: Design, control, and evaluation of a family of kinesthetic haptic interfaces. PhD thesis, Technische Universität München (2006)

    Google Scholar 

  85. Unger, B.J., Nicolaidis, A., Berkelman, P.J., Thompson, A., Klatzky, R.L., Hollis, R.L.: Comparison of 3-d haptic peg-in-hole tasks in real and virtual environments. In: IEEE/RSJ, IROS, pp. 1751–1756 (2001)

    Google Scholar 

  86. Van der Linde, R.Q., Lammertse, P., Frederiksen, E., Ruiter, B.: The hapticmaster, a new high-performance haptic interface. In: Proc. of Eurohaptics’02 (2002)

    Google Scholar 

  87. Veneman, J.F., Ekkelenkamp, R., Kruidhof, R., van der Helm, F.C.T., van der Kooij, H.: A series elastic- and Bowden-cable-based actuation system for use as torque actuator in exoskeleton-type robots. Int. J. Robot. Res. 25, 261–281 (2006)

    Article  Google Scholar 

  88. VirtaMed: HystSim. http://www.virtamed.com/ (2012)

  89. Vollenweider, M.: High quality virtual reality system with haptic feedback. PhD thesis, EPFL, No. 2251 (2000)

    Google Scholar 

  90. Wagner, C.R., Stylopoulos, N., Jackson, P.G., Howe, R.D.: The benefit of force feedback in surgery: examination of blunt dissection. Presence: Teleoperators Virtual Environ. 16(3), 252–262 (2007)

    Article  Google Scholar 

  91. Wall, S.A., Harwin, W.: A high bandwidth interface for haptic human computer interaction. Mechatronics 11, 371–387 (2001)

    Article  Google Scholar 

  92. Wall, S.A., Harwin, W.S.: Quantification of the effects of haptic feedback during a motor skills task in a simulated environment. In: Proc. of the 2nd PHANToM Users Research Symposium, pp. 61–69 (2000)

    Google Scholar 

  93. Weir, D.W., Colgate, J.E., Peshkin, M.A.: Measuring and increasing z-width with active electrical damping. In: Proc. of IEEE International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 169–175 (2008)

    Google Scholar 

  94. Weisenberger, J., Kreier, M., Rinker, M.: Judging the orientation of sinusoidal and square-wave virtual gratings presented via 2-dof and 3-dof haptic interfaces. Haptics-e 1(4) (2000)

    Google Scholar 

  95. Yoon, J., Ryu, J.: Design, fabrication, and evaluation of a new haptic device using a parallel mechanism. IEEE/ASME Trans. Mechatron. 6(3), 221–233 (2001)

    Article  Google Scholar 

  96. Zinn, M., Khatib, O., Roth, B., Salisbury, J.K.: Large workspace haptic devices—a new actuation approach. In: Proceedings of the 2008 Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, HAPTICS’08, pp. 185–192. IEEE Computer Society, Washington (2008). doi:10.1109/HAPTICS.2008.4479941

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Samur, E. (2012). State of the Art. In: Performance Metrics for Haptic Interfaces. Springer Series on Touch and Haptic Systems. Springer, London. https://doi.org/10.1007/978-1-4471-4225-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4225-6_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4224-9

  • Online ISBN: 978-1-4471-4225-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics