Advertisement

Heart Failure pp 427-459 | Cite as

Valve Repair and Replacement in Congestive Heart Failure

  • Salil V. Deo
  • Soon J. Park
Chapter

Abstract

Valvular heart disease is often a cause or effect of congestive heart failure. This chapter describes the most important valvular conditions found in patients with congestive heart failure and attempts to provide the reader with a contemporary outlook on their management.

Keywords

Aortic Regurgitation Aortic Stenosis Congestive Heart Failure Tricuspid Regurgitation Functional Mitral Regurgitation Ischemic Mitral Regurgitation Aortic Valve Replacement Mitral Valve Repair Tricuspid Valve Repair Trans-Femoral Aortic Valve Implantation Percutaneous Therapy 

Notes

Acknowledgements

We would like to thank Dr. Ishan K Shah for his help in the preparation of the manuscript. We also thank Ms. Melody Roller for assisting us to obtain copyright permission for the reproduced figures in this chapter.

Disclosure We do not have any disclosure related to this article.

References

  1. 1.
    Carpentier A. Cardiac valve surgery – the “French correction”. J Thorac Cardiovasc Surg. 1983;86(3):323–37.PubMedGoogle Scholar
  2. 2.
    Bolling SF, Deeb GM, Brunsting LA, Bach DS. Early outcome of mitral valve reconstruction in patients with end-stage cardiomyopathy. J Thorac Cardiovasc Surg 1995; 109(4):676–82; discussion 682–73.Google Scholar
  3. 3.
    Bach DS, Bolling SF. Early improvement in congestive heart failure after correction of secondary mitral regurgitation in end-stage cardiomyopathy. Am Heart J. 1995;129(6):1165–70.CrossRefPubMedGoogle Scholar
  4. 4.
    Calafiore AM, Gallina S, Di Mauro M, et al. Mitral valve procedure in dilated cardiomyopathy: repair or replacement? Ann Thorac Surg 2001;71(4):1146–52; discussion 1152–43.Google Scholar
  5. 5.
    Replogle RL, Campbell CD. Surgery for mitral regurgitation associated with ischemic heart disease. Results and strategies. Circulation. 1989;9(6 Pt 2):I122–5.Google Scholar
  6. 6.
    Maltais S, Schaff HV, Daly RC, et al. Mitral regurgitation surgery in patients with ischemic cardiomyopathy and ischemic mitral regurgitation: factors that influence survival. J Thorac Cardiovasc Surg. 2011;142(5):995–1001.CrossRefPubMedGoogle Scholar
  7. 7.
    Timek TA, Miller DC. Another multidisciplinary look at ischemic mitral regurgitation. Semin Thorac Cardiovasc Surg. 2011;23(3):220–31.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    McGee EC, Gillinov AM, Blackstone EH, et al. Recurrent mitral regurgitation after annuloplasty for functional ischemic mitral regurgitation. J Thorac Cardiovasc Surg. 2004;128(6):916–24.CrossRefPubMedGoogle Scholar
  9. 9.
    Bin J, Zhibin C, Weidong R, et al. Assessment of mitral annulus (p3 segment) asymmetric deformity in myocardial infarction with ischemic regurgitation by real time three-dimensional echocardiography. Echocardiography. 2012;29(1):42–50.CrossRefPubMedGoogle Scholar
  10. 10.
    Watanabe N, Ogasawara Y, Yamaura Y, et al. Geometric differences of the mitral valve tenting between anterior and inferior myocardial infarction with significant ischemic mitral regurgitation: quantitation by novel software system with transthoracic real-time three-dimensional echocardiography. J Am Soc Echocardiogr. 2006;19(1):71–5.CrossRefPubMedGoogle Scholar
  11. 11.
    Watanabe N, Ogasawara Y, Yamaura Y, et al. Mitral annulus flattens in ischemic mitral regurgitation: geometric differences between inferior and anterior myocardial infarction: a real-time 3-dimensional echocardiographic study. Circulation. 2005;112(9 Suppl):I458–62.PubMedGoogle Scholar
  12. 12.
    Watanabe N, Ogasawara Y, Yamaura Y, et al. Geometric deformity of the mitral annulus in patients with ischemic mitral regurgitation: a real-time three-dimensional echocardiographic study. J Heart Valve Dis. 2005;14(4):447–52.PubMedGoogle Scholar
  13. 13.
    Gorman 3rd JH, Jackson BM, Gorman RC, et al. Papillary muscle discoordination rather than increased annular area facilitates mitral regurgitation after acute posterior myocardial infarction. Circulation. 1997;96(9 Suppl):II-124–7.Google Scholar
  14. 14.
    Gorman 3rd JH, Gorman RC, Jackson BM, et al. Distortions of the mitral valve in acute ischemic mitral regurgitation. Ann Thorac Surg. 1997;64(4):1026–31.CrossRefPubMedGoogle Scholar
  15. 15.
    He S, Fontaine AA, Schwammenthal E, et al. Integrated mechanism for functional mitral regurgitation: leaflet restriction versus coapting force: in vitro studies. Circulation. 1997;96(6):1826–34.CrossRefPubMedGoogle Scholar
  16. 16.
    Agricola E, Oppizzi M, Pisani M, et al. Ischemic mitral regurgitation: mechanisms and echocardiographic classification. Eur Heart J Cardiovasc Imaging. 2008;9(2):207–21.Google Scholar
  17. 17.
    TG DS, MA A, GW D, JG B. Mitral valve surgery in advanced heart failure. J Am Coll Cardiol. 2010;55(4):271–82.CrossRefGoogle Scholar
  18. 18.
    Kono T, Sabbah HN, Rosman H, et al. Left ventricular shape is the primary determinant of functional mitral regurgitation in heart failure. J Am Coll Cardiol. 1992;20(7):1594–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Sabbah HN, Kono T, Rosman H, et al. Left ventricular shape: a factor in the etiology of functional mitral regurgitation in heart failure. Am Heart J. 1992;23(4):961–6.CrossRefGoogle Scholar
  20. 20.
    Kono T, Sabbah HN, Stein PD, et al. Left ventricular shape as a determinant of functional mitral regurgitation in patients with severe heart failure secondary to either coronary artery disease or idiopathic dilated cardiomyopathy. Am J Cardiol. 1991;68(4):355–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Boltwood CM, Tei C, Wong M, Shah PM. Quantitative echocardiography of the mitral complex in dilated cardiomyopathy: the mechanism of functional mitral regurgitation. Circulation. 1983;68(3):498–508.CrossRefPubMedGoogle Scholar
  22. 22.
    Sadeghpour A, Abtahi F, Kiavar M, et al. Echocardiographic evaluation of mitral geometry in functional mitral regurgitation. J Cardiothorac Surg. 2008;3:54.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Keren G, Katz S, Strom J, et al. Dynamic mitral regurgitation. An important determinant of the hemodynamic response to load alterations and inotropic therapy in severe heart failure. Circulation. 1989;80(2):306–13.CrossRefPubMedGoogle Scholar
  24. 24.
    Lancellotti P, Magne J. Stress testing for the evaluation of patients with mitral regurgitation. Curr Opin Cardiol. 2012;27(5):492–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Bach DS, Deeb GM, Bolling SF. Accuracy of intraoperative transesophageal echocardiography for estimating the severity of functional mitral regurgitation. Am J Cardiol. 1995;76(7):508–12.CrossRefPubMedGoogle Scholar
  26. 26.
    Lancellotti P, Lebrun F, Pierard LA. Determinants of exercise-induced changes in mitral regurgitation in patients with coronary artery disease and left ventricular dysfunction. J Am Coll Cardiol. 2003;42(11):1921–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Lebrun F, Lancellotti P, Pierard LA. Quantitation of functional mitral regurgitation during bicycle exercise in patients with heart failure. J Am Coll Cardiol. 2001;38(6):1685–92.CrossRefPubMedGoogle Scholar
  28. 28.
    Giga V, Ostojic M, Vujisic-Tesic B, et al. Exercise-induced changes in mitral regurgitation in patients with prior myocardial infarction and left ventricular dysfunction: relation to mitral deformation and left ventricular function and shape. Eur Heart J. 2005;26(18):1860–5.CrossRefPubMedGoogle Scholar
  29. 29.
    Pierard LA, Lancellotti P. The role of ischemic mitral regurgitation in the pathogenesis of acute pulmonary edema. N Engl J Med. 2004;351(16):1627–34.CrossRefPubMedGoogle Scholar
  30. 30.
    Lancellotti P, Melon P, Sakalihasan N, et al. Effect of cardiac resynchronization therapy on functional mitral regurgitation in heart failure. Am J Cardiol. 2004;94(11):1462–5.CrossRefPubMedGoogle Scholar
  31. 31.
    Lancellotti P, Gerard PL, Pierard LA. Long-term outcome of patients with heart failure and dynamic functional mitral regurgitation. Eur Heart J. 2005;26(15):1528–32.CrossRefPubMedGoogle Scholar
  32. 32.
    Lancellotti P, Troisfontaines P, Toussaint AC, Pierard LA. Prognostic importance of exercise-induced changes in mitral regurgitation in patients with chronic ischemic left ventricular dysfunction. Circulation. 2003;108(14):1713–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Yiu SF, Enriguqez-Sarano M, Tribouilloy C, et al. Determinants of the degree of functional mitral regurgitation in patients with systolic left ventricular dysfunction: a quantitative clinical study. Circulation. 2000;102(12):1400–6.CrossRefPubMedGoogle Scholar
  34. 34.
    Grande-Allen KJ, Borowski AG, Troughton RW, et al. Apparently normal mitral valves in patients with heart failure demonstrate biochemical and structural derangements: an extracellular matrix and echocardiographic study. J Am Coll Cardiol. 2005;45(1):54–61.CrossRefPubMedGoogle Scholar
  35. 35.
    Hickey MS, Smith LR, Muhlbaier LH, et al. Current prognosis of ischemic mitral regurgitation. Implications for future management. Circulation. 1988;78(3 Pt 2):I51–9.PubMedGoogle Scholar
  36. 36.
    Lamas GA, Mitchell GF, Flaker GC, et al. Clinical significance of mitral regurgitation after acute myocardial infarction survival and ventricular enlargement investigators. Circulation. 1997;96(3):827–33.CrossRefPubMedGoogle Scholar
  37. 37.
    Grigioni F, Enriquez-Sarano M, Zehr KJ, et al. Ischemic mitral regurgitation: long-term outcome and prognostic implications with quantitative doppler assessment. Circulation. 2001;103(13):1759–64.CrossRefPubMedGoogle Scholar
  38. 38.
    Trichon BH, Felker GM, Shaw LK, et al. Relation of frequency and severity of mitral regurgitation to survival among patients with left ventricular systolic dysfunction and heart failure. Am J Cardiol. 2003;91(5):538–43.CrossRefPubMedGoogle Scholar
  39. 39.
    Koelling TM, Aaronson KD, Cody RJ, et al. Prognostic significance of mitral regurgitation and tricuspid regurgitation in patients with left ventricular systolic dysfunction. Am Heart J. 2002;144(3):524–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Ellis SG, Whitlow PL, Raymond RE, Schneider JP. Impact of mitral regurgitation on long-term survival after percutaneous coronary intervention. Am J Cardiol. 2002;89(3):315–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Gillinov AM, Wierup PN, Blackstone EH, et al. Is repair preferable to replacement for ischemic mitral regurgitation? J Thorac Cardiovasc Surg. 2001;122(6):1125–41.CrossRefPubMedGoogle Scholar
  42. 42.
    Grossi EA, Goldberg JD, LaPietra A, et al. Ischemic mitral valve reconstruction and replacement: comparison of long-term survival and complications. J Thorac Cardiovasc Surg. 2001;122(6):1107–24.CrossRefPubMedGoogle Scholar
  43. 43.
    Bax JJ, Braun J, Somer ST, et al. Restrictive annuloplasty and coronary revascularization in ischemic mitral regurgitation results in reverse left ventricular remodeling. Circulation. 2004;110(11 Suppl 1):II103–8.PubMedGoogle Scholar
  44. 44.
    Geidel S, Lass M, Schneider C, et al. Downsizing of the mitral valve and coronary revascularization in severe ischemic mitral regurgitation results in reverse left ventricular and left atrial remodeling. Eur J Cardiothorac Surg. 2005;27(6):1011–6.CrossRefPubMedGoogle Scholar
  45. 45.
    Bonow RO, Carabello BA, Chatterjee K, et al. 2008 focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 1998 guidelines for the management of patients with valvular heart disease). Endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2008;52(13):e1–142.CrossRefPubMedGoogle Scholar
  46. 46.
    David TE, Uden DE, Strauss HD. The importance of the mitral apparatus in left ventricular function after correction of mitral regurgitation. Circulation. 1983;68(3 Pt 2):II76–82.PubMedGoogle Scholar
  47. 47.
    Tibayan FA, Rodriguez F, Langer F, et al. Undersized mitral annuloplasty alters left ventricular shape during acute ischemic mitral regurgitation. Circulation. 2004;110(11 Suppl 1):II98–102.PubMedGoogle Scholar
  48. 48.
    Mihaljevic T, Lam BK, Rajeswaran J, et al. Impact of mitral valve annuloplasty combined with revascularization in patients with functional ischemic mitral regurgitation. J Am Coll Cardiol. 2007;49(22):2191–201.CrossRefPubMedGoogle Scholar
  49. 49.
    Fukuda S, Gillinov AM, Song JM, et al. Echocardiographic insights into atrial and ventricular mechanisms of functional tricuspid regurgitation. Am Heart J. 2006;152(6):1208–14.CrossRefPubMedGoogle Scholar
  50. 50.
    Chan V, Ruel M, Mesana TG. Mitral valve replacement is a viable alternative to mitral valve repair for ischemic mitral regurgitation: a case-matched study. Ann Thorac Surg 2011;92(4):1358–65; discussion 1365–56.Google Scholar
  51. 51.
    Magne J, Senechal M, Mathieu P, et al. Restrictive annuloplasty for ischemic mitral regurgitation may induce functional mitral stenosis. J Am Coll Cardiol. 2008;51(17):1692–701.CrossRefPubMedGoogle Scholar
  52. 52.
    Kainuma S, Taniguchi K, Toda K, et al. Pulmonary hypertension predicts adverse cardiac events after restrictive mitral annuloplasty for severe functional mitral regurgitation. J Thorac Cardiovasc Surg. 2011;142(4):783–92.CrossRefPubMedGoogle Scholar
  53. 53.
    Kainuma S, Taniguchi K, Daimon T, et al. Does stringent restrictive annuloplasty for functional mitral regurgitation cause functional mitral stenosis and pulmonary hypertension? Circulation. 2011;124(11 Suppl):S97–106.CrossRefPubMedGoogle Scholar
  54. 54.
    Daimon M, Fukuda S, Adams DH, et al. Mitral valve repair with Carpentier-McCarthy-Adams IMR ETlogix annuloplasty ring for ischemic mitral regurgitation: early echocardiographic results from a multi-center study. Circulation. 2006;114(1 Suppl):I588–93.PubMedGoogle Scholar
  55. 55.
    Martin CE, Castano M, Gomez-Plana J, et al. Mitral stenosis after IMR ETlogix ring annuloplasty for ischemic regurgitation. Asian Cardiovasc Thorac Ann. 2012;20(5):534–8.CrossRefPubMedGoogle Scholar
  56. 56.
    Wong VM, Wenk JF, Zhang Z, et al. The effect of mitral annuloplasty shape in ischemic mitral regurgitation: a finite element simulation. Ann Thorac Surg. 2012;93(3):776–82.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Mirabel M, Iung B, Baron G, et al. What are the characteristics of patients with severe, symptomatic, mitral regurgitation who are denied surgery? Eur Heart J. 2007;28(11):1358–65.CrossRefPubMedGoogle Scholar
  58. 58.
    Chiam PT, Ruiz CE. Percutaneous transcatheter mitral valve repair: a classification of the technology. JACC Cardiovasc Interv. 2011;4(1):1–13.CrossRefPubMedGoogle Scholar
  59. 59.
    Feldman T, Kar S, Rinaldi M, et al. Percutaneous mitral repair with the MitraClip system: safety and midterm durability in the initial EVEREST (Endovascular Valve Edge-to-Edge REpair Study) cohort. J Am Coll Cardiol. 2009;54(8):686–94.CrossRefPubMedGoogle Scholar
  60. 60.
    Baldus S, Schillinger W, Franzen O, et al. MitraClip therapy in daily clinical practice: initial results from the German transcatheter mitral valve interventions (TRAMI) registry. Eur J Heart Fail. 2012;14(9):1050–5.CrossRefPubMedGoogle Scholar
  61. 61.
    Pinney SP. The role of tricuspid valve repair and replacement in right heart failure. Curr Opin Cardiol. 2012;27(3):288–95.CrossRefPubMedGoogle Scholar
  62. 62.
    Dreyfus GD, Corbi PJ, Chan KM, Bahrami T. Secondary tricuspid regurgitation or dilatation: which should be the criteria for surgical repair? Ann Thorac Surg. 2005;79(1):127–32.CrossRefPubMedGoogle Scholar
  63. 63.
    Vahanian A, Alfieri O, Andreotti F, et al. Guidelines on the management of valvular heart disease (version 2012): the joint task force on the management of valvular heart disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur J Cardiothorac Surg. 2012;42(4):S1–44.CrossRefPubMedGoogle Scholar
  64. 64.
    Matsunaga A, Duran CM. Progression of tricuspid regurgitation after repaired functional ischemic mitral regurgitation. Circulation. 2005;112(9 Suppl):I453–7.PubMedGoogle Scholar
  65. 65.
    Deloche A, Guerinon J, Fabiani JN, et al. Anatomical study of rheumatic tricuspid valve diseases: application to the study of various valvuloplasties. Ann Chir Thorac Cardiovasc. 1973;12(4):343–9.PubMedGoogle Scholar
  66. 66.
    Chikwe J, Anyanwu AC. Surgical strategies for functional tricuspid regurgitation. Semin Thorac Cardiovasc Surg. 2010;22(1):90–6.CrossRefPubMedGoogle Scholar
  67. 67.
    McCarthy PM, Bhudia SK, Rajeswaran J, et al. Tricuspid valve repair: durability and risk factors for failure. J Thorac Cardiovasc Surg. 2004;127(3):674–85.CrossRefPubMedGoogle Scholar
  68. 68.
    Kim YJ, Kwon DA, Kim HK, et al. Determinants of surgical outcome in patients with isolated tricuspid regurgitation. Circulation. 2009;120(17):1672–8.CrossRefPubMedGoogle Scholar
  69. 69.
    Topilsky Y, Khanna AD, Oh JK, et al. Preoperative factors associated with adverse outcome after tricuspid valve replacement. Circulation. 2011;123(18):1929–39.CrossRefPubMedGoogle Scholar
  70. 70.
    Rogers JH, Bolling SF. The tricuspid valve: current perspective and evolving management of tricuspid regurgitation. Circulation. 2009;119(20):2718–25.CrossRefPubMedGoogle Scholar
  71. 71.
    Iung B, Baron G, Butchart EG, et al. A prospective survey of patients with valvular heart disease in Europe: The Euro Heart Survey on valvular heart disease. Eur Heart J. 2003;24(13):1231–43.CrossRefPubMedGoogle Scholar
  72. 72.
    Chaliki HP, Mohty D, Avierinos JF, et al. Outcomes after aortic valve replacement in patients with severe aortic regurgitation and markedly reduced left ventricular function. Circulation. 2002;106(21):2687–93.CrossRefPubMedGoogle Scholar
  73. 73.
    Kamath AR, Varadarajan P, Turk R, et al. Survival in patients with severe aortic regurgitation and severe left ventricular dysfunction is improved by aortic valve replacement: results from a cohort of 166 patients with an ejection fraction < or =35%. Circulation. 2009;120(11 Suppl):S134–8.CrossRefPubMedGoogle Scholar
  74. 74.
    Brown ML, Schaff HV, Suri RM, et al. Indexed left ventricular dimensions best predict survival after aortic valve replacement in patients with aortic valve regurgitation. Ann Thorac Surg. 2009;87(4):1170–5; discussion 1175–76.Google Scholar
  75. 75.
    Bonow RO, Dodd JT, Maron BJ, O'Gara PT, White GG, McIntosh CL, et al. Long-term serial changes in left ventricular function and reversal of ventricular dilatation after valvereplacement for chronic aortic regurgitation. Circulation. 1988;78(5 Pt 1):1108–20.CrossRefPubMedGoogle Scholar
  76. 76.
    deFilippi CR, Willett DL, Brickner ME, et al. Usefulness of dobutamine echocardiography in distinguishing severe from nonsevere valvular aortic stenosis in patients with depressed left ventricular function and low transvalvular gradients. Am J Cardiol. 1995;75(2):191–4.CrossRefPubMedGoogle Scholar
  77. 77.
    Monin JL, Quere JP, Monchi M, et al. Low-gradient aortic stenosis: operative risk stratification and predictors for long-term outcome: a multicenter study using dobutamine stress hemodynamics. Circulation. 2003;108(3):319–24.CrossRefPubMedGoogle Scholar
  78. 78.
    Monin JL, Monchi M, Gest V, et al. Aortic stenosis with severe left ventricular dysfunction and low transvalvular pressure gradients: risk stratification by low-dose dobutamine echocardiography. J Am Coll Cardiol. 2001;37(8):2101–7.CrossRefPubMedGoogle Scholar
  79. 79.
    Blais C, Burwash IG, Mundigler G, et al. Projected valve area at normal flow rate improves the assessment of stenosis severity in patients with low-flow, low-gradient aortic stenosis: the multicenter TOPAS (Truly or Pseudo-Severe Aortic Stenosis) study. Circulation. 2006;113(5):711–21.CrossRefPubMedGoogle Scholar
  80. 80.
    Tribouilloy C, Levy F, Rusinaru D, et al. Outcome after aortic valve replacement for low-flow/low-gradient aortic stenosis without contractile reserve on dobutamine stress echocardiography. J Am Coll Cardiol. 2009;53(20):1865–73.CrossRefPubMedGoogle Scholar
  81. 81.
    Connolly HM, Oh JK, Schaff HV, et al. Severe aortic stenosis with low transvalvular gradient and severe left ventricular dysfunction:result of aortic valve replacement in 52 patients. Circulation. 2000;101(16):1940–6.CrossRefPubMedGoogle Scholar
  82. 82.
    Pai RG, Varadarajan P, Razzouk A. Survival benefit of aortic valve replacement in patients with severe aortic stenosis with low ejection fraction and low gradient with normal ejection fraction. Ann Thorac Surg. 2008;86(6):1781–9.CrossRefPubMedGoogle Scholar
  83. 83.
    Levy F, Laurent M, Monin JL, et al. Aortic valve replacement for low-flow/low-gradient aortic stenosis operative risk stratification and long-term outcome: a European multicenter study. J Am Coll Cardiol. 2008;51(15):1466–72.CrossRefPubMedGoogle Scholar
  84. 84.
    Powell DE, Tunick PA, Rosenzweig BP, et al. Aortic valve replacement in patients with aortic stenosis and severe left ventricular dysfunction. Arch Intern Med. 2000;160(9):1337–41.CrossRefPubMedGoogle Scholar
  85. 85.
    Malfatto G, Branzi G, Giglio A, et al. Diastolic dysfunction and abnormal exercise ventilation predict adverse outcome in elderly patients with chronic systolic heart failure. Eur J Prev Cardiol. 2012;19(3):396–403.CrossRefPubMedGoogle Scholar
  86. 86.
    Gardin JM, Leifer ES, Kitzman DW, et al. Usefulness of doppler echocardiographic left ventricular diastolic function and peak exercise oxygen consumption to predict cardiovascular outcomes in patients with systolic heart failure (from HF-ACTION). Am J Cardiol. 2012;110(6):862–9.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Clavel MA, Fuchs C, Burwash IG, et al. Predictors of outcomes in low-flow, low-gradient aortic stenosis: results of the multicenter TOPAS study. Circulation. 2008;118:S234–42.CrossRefPubMedGoogle Scholar
  88. 88.
    Fraccaro C, Al-Lamee R, Tarantini G, et al. Transcatheter aortic valve implantation in patients with severe left ventricular dysfunction: immediate and mid-term results, a multicenter study. Circ Cardiovasc Interv. 2012;5(2):253–60.CrossRefPubMedGoogle Scholar
  89. 89.
    Pibarot P, Dumesnil JG. Low-flow, low-gradient aortic stenosis with normal and depressed left ventricular ejection fraction. J Am Coll Cardiol. 2012;60(19):1845–53.CrossRefPubMedGoogle Scholar
  90. 90.
    Cribier A, Eltchaninoff H, Bash A, et al. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation. 2002;106(24):3006–8.CrossRefPubMedGoogle Scholar
  91. 91.
    Genereux P, Head SJ, Wood DA, et al. Transcatheter aortic valve implantation 10-year anniversary: review of current evidence and clinical implications. Eur Heart J. 2012;33(19):2388–98.CrossRefPubMedGoogle Scholar
  92. 92.
    Leon MB, Smith CR, Mack M, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med. 2010;363:1597–607.CrossRefPubMedGoogle Scholar
  93. 93.
    Smith CR, Leon MB, Mack MJ, et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med. 2011;364:2187–98.CrossRefPubMedGoogle Scholar
  94. 94.
    Kodali SK, Williams MR, Smith CR, et al. Two-year outcomes after transcatheter or surgical aortic-valve replacement. N Engl J Med. 2012;366:1686–95.CrossRefPubMedGoogle Scholar
  95. 95.
    Miller DC, Blackstone EH, Mack MJ, et al. Transcatheter (TAVR) versus surgical (AVR) aortic valve replacement: occurrence, hazard, risk factors, and consequences of neurologic events in the PARTNER trial. J Thorac Cardiovasc Surg. 2012;143(4):832–843.e13.CrossRefPubMedGoogle Scholar
  96. 96.
    Detaint D, Lepage L, Himbert D, et al. Determinants of significant paravalvular regurgitation after transcatheter aortic valve: implantation impact of device and annulus discongruence. JACC Cardiovasc Interv. 2009;2(9):821–7.CrossRefPubMedGoogle Scholar
  97. 97.
    Colli A, D'Amico R, Kempfert J, et al. Transesophageal echocardiographic scoring for transcatheter aortic valve implantation: impact of aortic cusp calcification on postoperative aortic regurgitation. J Thorac Cardiovasc Surg. 2011;142(5):1229–35.CrossRefPubMedGoogle Scholar
  98. 98.
    Wenaweser P, Buellesfeld L, Gerckens U, Grube E. Percutaneous aortic valve replacement for severe aortic regurgitation in degenerated bioprosthesis: the first valve in valve procedure using the Corevalve Revalving system. Catheter Cardiovasc Interv. 2007;70(5):760–4.CrossRefPubMedGoogle Scholar
  99. 99.
    Piazza N, Bleiziffer S, Brockmann G, et al. Transcatheter aortic valve implantation for failing surgical aortic bioprosthetic valve: from concept to clinical application and evaluation (part 2). JACC Cardiovasc Interv. 2011;4(7):733–42.CrossRefPubMedGoogle Scholar
  100. 100.
    Reynolds MR, Magnuson EA, Lei Y, et al. Cost-effectiveness of transcatheter aortic valve replacement compared with surgical aortic valve replacement in high-risk patients with severe aortic stenosis: results of the PARTNER (Placement of Aortic Transcatheter Valves) trial (Cohort A). J Am Coll Cardiol. 2012;60(25):2683–92.CrossRefPubMedGoogle Scholar
  101. 101.
  102. 102.
    Vahanian A, Alfieri O, Andreotti F, et al. Guidelines on the management of valvular heart disease (version 2012): the joint task force on the management of valvular heart disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur J Cardiothorac Surg. 2012;33(19):2451–96.Google Scholar

Copyright information

© Springer-Verlag London 2017

Authors and Affiliations

  1. 1.Division of Cardiac SurgeryUniversity Hospitals, Case Western Reserve UniversityClevelandUSA

Personalised recommendations