Impacts and Physico-Chemical Behavior of Inorganic Nanoparticles in the Environment

  • Auffan Melanie
  • Rose Jerome
  • Masion Armand
  • Labille Jerome
  • Chaneac Corinne
  • Mark R. Wiesner
  • Bottero Jean-Yves
Chapter

Abstract

The specific properties of engineered nanoparticles have been used in many fields (e.g., medicine, cosmetic, electronics, catalysis, and environment). Their increased production and use come along with questions about their environmental and human health impacts. Rather than doing case-by-case studies, our vision is to extract general principles from environmental pertinent examples that determine nanoparticles behavior and biological effects. In this chapter, we will discuss the case of TiO2 (used as additive in sunscreen) in terms of environmental degradation of nanoTiO2-based formulations, reactive oxygen species generation, colloidal stability in the water column, transport in porous media, and also ecotoxicological impacts.

Keywords

Toxicity Sludge Arsenic Fe3O4 Respiration 

Notes

Acknowledgments

The authors would like to thank the CNRS and CEA for funding the International Consortium for the Environmental Implications of NanoTechnology and also the NSF and the US-EPA for funding the Center for the Environmental Implications of NanoTechnology. They also acknowledge financial support from the French National Agency (ANR) in the frame of the P2N/MESONNET project.

References

  1. 1.
    Academies des Sciences et Technologies de Paris (2004) Nanoscience, Nanotechnologies. wwwacademie-sciencesfr 18Google Scholar
  2. 2.
    Adamson AW, Gast AP (1997) Physical chemistry of surfaces. Wiley, New YorkGoogle Scholar
  3. 3.
    Al-Abadleh HA, Grassian VH (2003) Oxide surfaces as environmental interfaces. Surf Sci Rep 52(3–4):63CrossRefGoogle Scholar
  4. 4.
    Almquist CB, Biswas P (2002) Role of synthesis method and particle size of nanostructured TiO2 on its photoactivity. J Catal 212(2):145CrossRefGoogle Scholar
  5. 5.
    Auffan M, Achouak W, Rose J, Roncato MA, Chaneac C, Waite DT, Masion A, Woicik JC, Wiesner MR, Bottero JY (2008) Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ Sci Technol 42(17):6730–6735CrossRefGoogle Scholar
  6. 6.
    Auffan M, Decome L, Rose J, Orsiere T, De Meo M, Briois V, Chaneac C, Olivi L, Berge-Lefranc JL, Botta A, Wiesner MR, Bottero JY (2006) In vitro interactions between DMSA-coated maghemite nanoparticles and human fibroblasts: A physicochemical and cyto-genotoxical study. Environ Sci Technol 40(14):4367–4373CrossRefGoogle Scholar
  7. 7.
    Auffan M, Pedeutour M, Rose J, Masion A, Ziarelli F, Borschneck D, Chaneac C, Botta C, Chaurand P, Labille J, Bottero JY (2010) Surface structural degradation of a TiO2-based nanomaterial used in cosmetics. Environ Sci Technol 44(7):2689–2694CrossRefGoogle Scholar
  8. 8.
    Auffan M, Pedeutour M, Rose J, Masion A, Ziarelli F, Borschneck D, Chaneac C, Botta C, Chaurand P, Labille J, Bottero JY (2010) Surface structural degradation of a TiO2-based nanomaterial used in cosmetics. Environ Sci Technol 44(7):2689–2694CrossRefGoogle Scholar
  9. 9.
    Auffan M, Rose J, Bottero JY, Lowry G, Jolivet JP, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, health, and safety perspective. Nat Nanotechnol 4:634–641CrossRefGoogle Scholar
  10. 10.
    Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4(10):634–641CrossRefGoogle Scholar
  11. 11.
    Auffan M, Rose J, Chaneac C, Jolivet JP, Wiesner MR, Bottero JY (2011) Surface reactivity of manufactured nanoparticles. In: Marano F, Lahmani M, Houdy P (eds) Nanotoxicology and nanoethics, vol Tome 4. Springer, BerlinGoogle Scholar
  12. 12.
    Auffan M, Rose J, Orsiere T, De Meo M, Thill A, Zeyons O, Proux O, Masion A, Chaurand P, Spalla O, Botta A, Wiesner MR, Bottero J-Y (2009) CeO2 nanoparticles induce DNA damage towards human dermal fibroblasts in vitro. Nanotoxicology 3(22):161–171CrossRefGoogle Scholar
  13. 13.
    Auffan M, Rose J, Proux O, Borschneck D, Masion A, Chaurand P, Hazemann JL, Chaneac C, Jolivet JP, Wiesner MR, Van Geen A, Bottero JY (2008) Enhanced adsorption of arsenic onto maghemites nanoparticles: As(III) as a probe of the surface structure and heterogeneity. Langmuir 24(7):3215–3222CrossRefGoogle Scholar
  14. 14.
    Auffan M, Rose J, Proux O, Borschneck D, Masion A, Chaurand P, Hazemann JL, Chaneac C, Jolivet JP, Wiesner MR, VanGeen A, Bottero JY (2008) Enhanced adsorption of arsenic onto nano-maghemites: As(3+) as a probe of the surface structure and heterogeneity. Langmuir 24:3215–3222CrossRefGoogle Scholar
  15. 15.
    Battin TJ, Kammer FVD, Weilhartner A, Ottofuelling S, Hofmann T (2009) Nanostructured TiO2: transport behavior and effects on aquatic microbial communities under environmental conditions. Environ Sci Technol 43(21):8098–8104CrossRefGoogle Scholar
  16. 16.
    Botta C, Labille J, Auffan M, Borschneck D, Miche H, Cabie M, Masion A, Rose J, Bottero JY (2011) TiO2-based nanoparticles released in water from commercialized sunscreens in a life cycle perspective: structures and quantities. Environ Pollut 159:1543–1550CrossRefGoogle Scholar
  17. 17.
    Braydich-Stolle L, Schaeublin N, Murdock R, Jiang J, Biswas P, Schlager J, Hussain S (2008) Crystal structure mediates mode of cell death in TiO2 nanotoxicity. J Nanopart ResGoogle Scholar
  18. 18.
    Brice-Profeta S, Arrio MA, Tronc E, Menguy N, Letard I, Cartier dit Moulin C, Nogues M, Chaneac C, Jolivet JP, Sainctavit P (2005) Magnetic order in [gamma]-Fe2O3 nanoparticles: a XMCD study. J Magn Magn Mater 288:354CrossRefGoogle Scholar
  19. 19.
    Cao G (2004) Nanostructures & nanomaterials: synthesis, properties & applications. Imperial College PressGoogle Scholar
  20. 20.
    Charlet L, Morin G, Rose J, Wang Y, Auffan M, Burnol A, Fernandez-Martinez A (2011) Reactivity at mineral-water interfaces, redox processes, and arsenic transport in the environment. CR Geosciences 343:123–139CrossRefGoogle Scholar
  21. 21.
    Dransfield G, Guest PJ, Lyth PL, McGarvey DJ, Truscott TG (2000) dispersions. DPtoT-bisPN-a, J Photochem Photobiol B 59 (120e3) e Photoactivity tests of TiO2-based inorganic sunscreens. Part 1: Non-aqueous dispersions. J Photochem Photobiol B 59 (1–3):147–151Google Scholar
  22. 22.
    Ferry JL, Craig P, Hexel C, Sisco P, Frey R, Pennington PL, Fulton MH, Scott IG, Decho AW, Kashiwada S, Murphy CJ, Shaw TJ (2009) Transfer of gold nanoparticles from the water column to the estuarine food web. Nat Nanotechnol 4(7):441–444CrossRefGoogle Scholar
  23. 23.
    Fujishima A (1999) TiO2 photocatalysis: fundamentals and applications. BKC, Inc., TokyoGoogle Scholar
  24. 24.
    Gurr J-R, Wang ASS, Chen C-H, Jan K-Y (2005) Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213(1–2):66–73CrossRefGoogle Scholar
  25. 25.
    Handy RH, von der Kammer F, Lead JR, Hassellöv M, Owen R, Crane M (2008) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17:287–314CrossRefGoogle Scholar
  26. 26.
    Hirakawa K, Mori M, Yoshida M, Oikawa S, Kawanishi S (2004) Photo-irradiated titanium dioxide catalyzes site specific DNA damage via generation of hydrogen peroxide. Free Radic Res 38(5):439–447CrossRefGoogle Scholar
  27. 27.
    Jang H, Kim S, Kim S (2007) Effect of particle size and phase composition of titanium dioxide nanoparticles on the photocatalytic properties. J Nanopart Res 3:141–147CrossRefGoogle Scholar
  28. 28.
    Jolivet JP, Chaneac C, Tronc E (2004) Iron oxide chemistry. From molecular clusters to extended solid networks. Chem Commun 5:481–487CrossRefGoogle Scholar
  29. 29.
    Jolivet JP, Froidefond C, Pottier A, Chanéac C, Cassaignon S, Tronc E, Euzen P (2004) Size tailoring of oxide nanoparticles by precipitation in aqueous medium. A semi-quantitative modelling. J Mater Chem 14:3281–3288CrossRefGoogle Scholar
  30. 30.
    Kaegi R, Sinnet B, Zuleeg S, Hagendorfer H, Mueller E, Vonbank R, Boller M, Burkhardt M (2010) Release of silver nanoparticles from outdoor facades. Environ Pollut 158(9):2900–2905CrossRefGoogle Scholar
  31. 31.
    Kahru A, Dubourguier H-C (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269(2–3):105–119CrossRefGoogle Scholar
  32. 32.
    Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RH, Lyon DY, Mahendra S, Mclaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27(9):1825–1851CrossRefGoogle Scholar
  33. 33.
    Labille J, Feng J, Botta C, Borschneck D, Sammut M, Cabie M, Auffan M, Rose J, Bottero JY (2010) Aging of TiO2 nanocomposites used in sunscreen. Dispersion and fate of the degradation residues in aqueous environment. Environ Pollut 158 (12):3482–3489Google Scholar
  34. 34.
    Lecoanet H, Bottero JY, Wiesner MR (2004) Laboratory assessment of the mobility of several commercial nanomaterials in porous media. Environ Sci Technol 38(19):5164–5169CrossRefGoogle Scholar
  35. 35.
    Lee BC, Kim SH, Shon K, Vigneswaran S, Kim SD, Cho J, Kim IS, Choi KH, Kim JB, Park HJ, Kim J-H (2009) Aquatic toxicity evaluation of TiO2 nanoparticle produced from sludge of TiCl4 flocculation of wastewater and seawater. J Nanopart Res 11:2087–2096CrossRefGoogle Scholar
  36. 36.
    Lee WA, Pernodet N, Li B, Lin CH, Hatchwell E, Rafailovich MH (2007) Multicomponent polymer coating to block photocatalytic activity of TiO2 nanoparticles. Chem Commun 7(45):4815–4817CrossRefGoogle Scholar
  37. 37.
    Madden AS, Hochella MF, Luxton TP (2006) Insights for size-dependent reactivity of hematite nanomineral surfaces through Cu2+ sorption. Geochim Cosmochim Acta 70(16):4095–4104CrossRefGoogle Scholar
  38. 38.
    Maira AJ, Yeung KL, Lee CY, Yue PL, Chan CK (2000) Size effects in gas-phase photo-oxidation of trichloroethylene using nanometer-sized TiO2 catalysts. J Catal 192(1):185CrossRefGoogle Scholar
  39. 39.
    Masion A, Auffan M, Labille J, Botta A, Solovitch N, Rose J, Bottero J-Y (2011) Environmental fate of nanoparticles: physical chemical and biological aspects, a few snapshots. Int J Nanotechnol (in press)Google Scholar
  40. 40.
    Morin G, Wang Y, Ona-Nguema G, Juillot F, Calas G, Menguy N, Aubry E, Bargar JR, Brown GE (2009) EXAFS and HRTEM evidence for As(3+)-containing surface precipitates on nanocrystalline magnetite: implications for as sequestration. Langmuir 25(16):9119–9128CrossRefGoogle Scholar
  41. 41.
    Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42(12):4447–4453CrossRefGoogle Scholar
  42. 42.
    Napierska D, Thomassen LCJ, Lison D, Martens JA, Hoet PH (2010) The nanosilica hazard: another variable entity. Part Fibre Toxicol 7(1):39Google Scholar
  43. 43.
    Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627CrossRefGoogle Scholar
  44. 44.
    Newman MD, Stotland M, Ellis JI (2009) The safety of nanosized particles in titanium dioxide- and zinc oxide-based sunscreens. J Am Acad Dermatol 61(4):685–692CrossRefGoogle Scholar
  45. 45.
    Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839CrossRefGoogle Scholar
  46. 46.
    Pelizzetti E, Serpone N (1986) Homogeneous and heterogeneous photocatalysis. Reidel Publishing Company, DordrechtCrossRefGoogle Scholar
  47. 47.
    Petrazzuoli M (2000) Advances in sunscreens. Curr Probl Dermatol 12(6):287–290CrossRefGoogle Scholar
  48. 48.
    Popov AP, Priezzhev AV, Lademann J, Myllyla R (2005) TiO2 nanoparticles as an effective UV-B radiation skin-protective compound in sunscreens. J Phys D Appl Phys 38(15):2564–2570CrossRefGoogle Scholar
  49. 49.
    Pottier AS, Cassaignon S, Chaneac C, Villain F, Tronc E, Jolivet JP (2003) Size tailoring of TiO2 anatase nanoparticles in aqueous medium and synthesis of nanocomposites. Characterization by Raman spectroscopy. J Mater Chem 13(4):877–882CrossRefGoogle Scholar
  50. 50.
    Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions. National Association of Corrosion Engineers, HoustonGoogle Scholar
  51. 51.
    Robichaud CO, Uyar AE, Darby MR, Zucker LG, Wiesner MR (2009) Estimates of upper bounds and trends in nano-tio2 production as a basis for exposure assessment. Environ Sci Technol 43(12):4227–4233CrossRefGoogle Scholar
  52. 52.
    Sato T, Taya M (2006) Enhancement of phage inactivation using photocatalytic titanium dioxide particles with different crystalline structures. Biochem Eng J 28(3):303–308CrossRefGoogle Scholar
  53. 53.
    Serpone N, Dondi D, Albini A (2007) Inorganic and organic UV filters. Their role and efficacy in sunscreens and suncare products. Inorg Chim Acta 360(3):794–802Google Scholar
  54. 54.
    Serpone N, Pelizzetti E (1989) Photocatalysis: fundamentals and applications. Wiley, New YorkGoogle Scholar
  55. 55.
    Sharma VK (2009) Aggregation and toxicity of titanium dioxide nanoparticles in aquatic environment-A Review. J Environ Sci Health A Tox Hazard Subst Environ Eng 44(14):1485–1495CrossRefGoogle Scholar
  56. 56.
    Sigg L, Behra P, Stumm GN (2000) Chimie des milieux aquatiques, chimie des eaux naturelles et des interfaces dans l’environnementGoogle Scholar
  57. 57.
    Solovitch N, Labille J, Rose J, Chaurand P, Borschneck D, Wiesner MR, Bottero JY (2010) Concurrent aggregation and deposition of Tio2 nanoparticles in a sandy porous media. Environ Sci Technol 44(13):4897–4902CrossRefGoogle Scholar
  58. 58.
    Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank AM (2006) Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol 40(19):6151–6156CrossRefGoogle Scholar
  59. 59.
    Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank AM (2006) Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol 40(19):6151–6156CrossRefGoogle Scholar
  60. 60.
    Turkevitch J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. J Discuss Faraday Soc 11:55–75CrossRefGoogle Scholar
  61. 61.
    Uheida A, Salazar-Alvarez G, Bjorkman E, Yu Z, Muhammed M (2006) Fe3O4 and gamma-Fe2O3 nanoparticles for the adsorption of Co2+ from aqueous solution. J Colloid Interface Sci 298(2):501–507CrossRefGoogle Scholar
  62. 62.
    Villieras F, Michot LJ, Bardot F, Chamerois M, Eypert-Blaison C, Francois M, Gerard G, Cases JM (2002) Surface heterogeneity of minerals. Comptes Rendus Geosciences 334(9):597–609CrossRefGoogle Scholar
  63. 63.
    Wang CC, Zhang Z, Ying JY (1997) Photocatalytic decomposition of halogenated organics over nanocrystalline titania. Nanostruct Mater 9(1–8):583CrossRefGoogle Scholar
  64. 64.
    Wang YH, Morin G, Ona-Nguema G, Menguy N, Juillot F, Aubry E, Guyot F, Calas G, Brown GE (2008) Arsenite sorption at the magnetite-water interface during aqueous precipitation of magnetite: EXAFS evidence for a new arsenite surface complex. Geochim Cosmochim Acta 72:2573–2586CrossRefGoogle Scholar
  65. 65.
    Warheit DB, Webb TR, Sayes CM, Colvin VL, Reed KL (2006) Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon particle size and surface area. Toxicol Sci 91(1):227–236CrossRefGoogle Scholar
  66. 66.
    Yean S, Cong L, Yavuz CT, Mayo JT, Yu WW, Kan AT, Colvin VL, Tomson MB (2005) Effect of magnetic particle size on adsorption and desorption of arsenite and arsenate. J Mater Res 20:3255–3264CrossRefGoogle Scholar
  67. 67.
    Zeyons O, Thill A, Chauvat F, Menguy N, Cassier-Chauvat C, Orear C, Daraspe J, Auffan M, Rose J, Spalla O (2009) Direct and indirect CeO2 nanoparticles toxicity for E. coli and Synechocystis. Nanotoxicology 3(4):284–295CrossRefGoogle Scholar
  68. 68.
    Zhu X, Wang J, Zhang X, Chang Y, Chen Y (2010) Trophic transfer of TiO2 nanoparticles from daphnia to zebrafish in a simplified freshwater food chain. Chemosphere 79:928–933CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Auffan Melanie
    • 1
    • 2
    • 3
  • Rose Jerome
    • 1
    • 2
    • 3
  • Masion Armand
    • 1
    • 2
    • 3
  • Labille Jerome
    • 1
    • 2
    • 3
  • Chaneac Corinne
    • 3
    • 4
  • Mark R. Wiesner
    • 3
    • 5
  • Bottero Jean-Yves
    • 1
    • 2
    • 3
  1. 1.Aix-Marseille UniversityAix en ProvenceFrance
  2. 2.CNRSAix en ProvenceFrance
  3. 3.International Consortium for the Environmental Implications of NanotechnologyDuke UniversityDurhamUSA
  4. 4.Laboratoire de chimie de la matière condenséeParisFrance
  5. 5.Center for the Environmental Implications of NanotechnologyDuke UniversityDurhamUSA

Personalised recommendations