Delayed Hydride Cracking: Theory and Experiment

Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

A brief overview is presented of the general features of delayed hydride cracking (DHC) in zirconium alloys. The data on DHC growth rate and threshold stress intensity factor \( K_{IH} , \), are examined in relation to theoretical models developed to rationalize these. The dependence of DHC growth rate on temperature, applied stress intensity factor, direction of approach to temperature (hydrogen concentration in solution), yield strength, microstructure, and the limiting conditions for growth are explored. Likewise, the parameters and conditions for \( K_{IH} , \) are identified. Various threshold limiting conditions are rationalized in terms of an explicit theoretical relationship between the applied stress intensity factor and the critical dimensions of the hydrided region formed at the crack tip. These analyses have led to a number of new insights concerning the factors controlling \( K_{IH} , \)

Keywords

Titanium Migration Furnace Zirconium Enthalpy 

References

  1. 1.
    Ambler, J.F.R.: Effect of direction of approach to temperature on the delayed hydrogen cracking behavior of cold-worked Zr-2.5Nb. In: Franklin, D.G., Adamson, R.B. (eds.) Zirconium in the Nuclear Industry: Sixth International Symposium. ASTM STP, vol. 824, pp. 653–674 (1984)Google Scholar
  2. 2.
    Amouzouvi, K.F., Clegg, L.J.: Effect of heat treatment on delayed hydride cracking in Zr-2.5 wt pct Nb. Metall. Trans. A 18A, 1687–1694 (1987)Google Scholar
  3. 3.
    Amouzouvi, K.F., Clegg, L.J.: Peak amplitude distribution of acoustic emission events during delayed hydride cracking of Zr-2.5% Nb alloys. In: Tyson, W.R., Mukherjee B. (eds.) Proceedings of International Symposium on Fracture Mechanics, pp. 107–110. Pergamon Press, Toronto, Canada (1988)Google Scholar
  4. 4.
    Banks, T.M., Garlick, A.: The form of crack tip plastic zones. Eng. Fract. Mech. 19, 571–581 (1984)CrossRefGoogle Scholar
  5. 5.
    CSA (2010) Technical Requirements for the In-service Evaluation of Zirconium Alloy Pressure Tubes in CANDU Reactors. Canadian Standards Association, Mississauga, Ontario, Canada, Nuclear Standard N285.8-10Google Scholar
  6. 6.
    Cann, C.D., Sexton, E.E.: An electron optical study of hydride precipitation and growth at crack tips in zirconium. Acta Metall. 28, 1215–1222 (1980)CrossRefGoogle Scholar
  7. 7.
    Carpenter, G.J.C.: The dilatational misfit of zirconium hydrides precipitated in zirconium. J. Nucl. Mater. 48, 264–266 (1973)CrossRefGoogle Scholar
  8. 8.
    Causey, A.R., Urbanic, V.F., Coleman, C.E.: In-reactor oxidation of crevices and cracks in cold-worked Zr-2.5 wt.% Nb. J. Nucl. Mater. 71, 25–35 (1977)CrossRefGoogle Scholar
  9. 9.
    Cheadle, B.A., Coleman, C.E., Ambler, J.F.R.: Prevention of delayed hydride cracking in zirconium alloys. In: Franklin, D.G., Adamson, R.G. (eds.) Zirconium in the Nuclear Industry—Seventh International Symposium. ASTM STP, vol. 939, pp. 224–240 (1987)Google Scholar
  10. 10.
    Chiu, Y.P.: On the stress field due to initial strains in a cuboid surrounded by an infinite space. J. Appl. Mech. 44, 587–590 (1977)MATHCrossRefGoogle Scholar
  11. 11.
    Christodoulou, N., Turner, P.A., Ho, E.T.C.: Anisotropy of yielding in a Zr-2.5Nb pressure tube material. Metall. Trans. A 31A, 409–420 (2000)CrossRefGoogle Scholar
  12. 12.
    Cirimello, P., Domizzi, G., Haddad, R.: Influence of metallurgical variables on delayed hydride cracking in Zr-Nb pressure tubes. J. Nucl. Mater. 350, 135–146 (2006)CrossRefGoogle Scholar
  13. 13.
    Coleman, C.E.: Effect of texture on hydride reorientation and delayed hydrogen cracking in cold-worked Zr-2.5Nb. In: Franklin, D.G. (ed.) Zirconium in the Nuclear Industry: 5th International Symposium. ASTM STP, vol. 754, pp. 393–411 (1982)Google Scholar
  14. 14.
    Coleman, C.E., Sagat, S., Amouzouvi, K.F.: Control of microstructure to increase the tolerance of zirconium alloys to hydride cracking. Atomic Energy of Canada Report, Report No. AECL-9524. Atomic Energy of Canada Ltd, Chalk River Laboratories, Chalk River, Ontario, Canada (1987)Google Scholar
  15. 15.
    Coleman, C.E.: Cracking of hydride-forming metals and alloys. In: Milne, I., Ritchie, R.O., Karihaloo, B. (eds.) Comprehensive Structural Integrity, vol. 6, Chapter 6.03, pp. 103–161. Elsevier, Oxford (2003) CrossRefGoogle Scholar
  16. 16.
    Coleman, C.E., Inozemtsev, V.V.: Measurement of rates of delayed hydride cracking (DHC) in Zr-25Nb alloys: An IAEA coordinated research project. J. ASTM Int. 5, Paper ID JAI101091 (2008)CrossRefGoogle Scholar
  17. 17.
    Dunn, J.T., Kakaria, B.K., Graham, J., et al.: CANDU-PHW Fuel Channel Replacement Experience, AECL. Report No. AECL-7538. Atomic Energy of Canada Ltd, Chalk River Laboratories, Chalk River, Ontario, Canada (1982)Google Scholar
  18. 18.
    Dutton, R., Puls, M.P.: A theoretical model for hydrogen-induced sub-critical crack growth. In: Effect of Hydrogen on Behavior of Materials, pp. 512–525. TMS-AIME, New York (1976)Google Scholar
  19. 19.
    Dutton, R., Nuttall, K., Puls, M.P., et al.: Mechanisms of hydrogen induced delayed cracking in hydride forming materials. Metall. Trans. A 8A, 1553–1562 (1977)Google Scholar
  20. 20.
    Domizzi, G., Haddad, R.: Reply to Young S. Kim: Comment on “Influence of metallurgical variables on delayed hydride cracking in Zr-Nb pressure tubes: by Cirimello et al. J. Nucl. Mater. 350 (2006) 135–146. J. Nucl. Mater. 374, 331–333 (2008)Google Scholar
  21. 21.
    Edsinger, K.: A review of fuel degradation in BWRs. In: Proceedings of International Topical Meeting on Light Water Reactor Fuel Performance. ANS, Park City, UT, USA, pp. 62–179 (2000)Google Scholar
  22. 22.
    Ellyin, F., Wu, J.: Effect of hydride precipitation on the elastoplastic stress field near a crack tip. Acta Metall. Mater. 42, 2709–2717 (1994)CrossRefGoogle Scholar
  23. 23.
    Flanagan, T.B., Mason, N.B., Birnbaum, H.K.: The effect of stress on hydride precipitation. Scripta Metall. 15, 109–112 (1981)CrossRefGoogle Scholar
  24. 24.
    Huang, F.H., Mills, W.J.: Delayed hydride cracking behavior for ZIRCALOY-2 tubing. Metall. Trans. A 22A, 2049–2060 (1991)Google Scholar
  25. 25.
    Hutchinson, J.W.: Singular behaviour at the end of a tensile crack in a hardening material. J. Mech. Phys. Solids 16, 13–31 (1968)MATHCrossRefGoogle Scholar
  26. 26.
    IAEA: Delayed hydride cracking in zirconium alloys in pressure tube nuclear reactors. International Atomic Energy Agency, Report No. IAEA-TECDOC-1410 (2004)Google Scholar
  27. 27.
    Jovanovic, M.T., Shek, G.K., Seahra, H., et al.: Metallographic and fractographic observations of hydrides during delayed hydride cracking in Zr-2.5 %Nb alloy. Mater. Charact. 40, 15–25 (1998)CrossRefGoogle Scholar
  28. 28.
    Jovanovic, M.T., Edie, R.L., Ma, Y., et al.: The effect of annealing on hardness, microstructure and delayed hydride cracking in Zr-2.5Nb pressure tube material. Mater. Charact. 47, 259–268 (2001)CrossRefGoogle Scholar
  29. 29.
    Kerr, M., Daymond, M.R., Holt, R.A., et al.: Observation of growth of a precipitate at a stress concentration by synchrotron X-ray diffraction. Scripta Mater. 62, 341–344 (2010)CrossRefGoogle Scholar
  30. 30.
    Kim, S.S., Kwon, S.C., Kim, Y.S.: The effect of texture variation on delayed hydride cracking behavior of Zr-2.5%Nb plate. J. Nucl. Mater. 273, 52–59 (1999)CrossRefGoogle Scholar
  31. 31.
    Kim, S.S., Kim, Y.S.: KIH in radial textured Zr-2.5%Nb pressure tube. J. Nucl. Mater. 279, 286–292 (2000)CrossRefGoogle Scholar
  32. 32.
    Kim, S.S., Kim, Y.S.: J. Korean Nucl. Soc. 32, 1 (2000)Google Scholar
  33. 33.
    Kim, Y.S., Matvienko, Y.G., Cheong, Y.M., et al.: A model of the threshold stress intensity factor, KIH, for delayed hydride cracking of Zr-2.5Nb alloy. J. Nucl. Mater. 278, 251–257 (2000)CrossRefGoogle Scholar
  34. 34.
    Kim, S.S.: The texture dependence of KIH in Zr-2.5%Nb pressure tube materials. J. Nucl. Mater 349, 83–95 (2006)CrossRefGoogle Scholar
  35. 35.
    Kim, Y.S., Park, S.S.: Stage I and II behaviors of delayed hydride cracking velocity in zirconium alloys. J. Alloys Compd. 453, 210–214 (2008)CrossRefGoogle Scholar
  36. 36.
    Koike, S., Suzuki, T.: An electron microscopic study of hydrogen embrittlement in vanadium—II. Acta Metall. 29, 553–565 (1981)CrossRefGoogle Scholar
  37. 37.
    Leitch, B.W.: Unpublished. Atomic Energy of Canada Ltd, Chalk River Laboratories, Chalk River Ontario, Canada (1997) Google Scholar
  38. 38.
    Leitch, B.W., Puls, M.P.: Finite element calculations of the accommodation energy of a misfitting precipitate in an elastic-plastic matrix. Metall. Trans. A 23A, 797–806 (1992)Google Scholar
  39. 39.
    Lufrano, J., Sofronis, P., Birnbaum, H.K.: Elastoplastically accommodated hydride formation and embrittlement. J. Mech. Phys. Solids 46, 1497–1520 (1998)MATHCrossRefGoogle Scholar
  40. 40.
    Lufrano, J., Sofronis, P.: Micromechanics of hydride formation and cracking in zirconium alloys. Comp. Modell. Eng. Sci. (CMES) 1, 119–131 (2000)Google Scholar
  41. 41.
    Matsui, H., Yoshikawa, N., Koiwa, M.: An in-situ observation of hydrogen induced crack in niobium. Acta Metall. 35, 413–426 (1987)CrossRefGoogle Scholar
  42. 42.
    Matvienko, Y.G.: The cohesive zone model in a problem of delayed hydride cracking of zirconium alloys. Int. J. Fract. 128, 73–79 (2004)MATHCrossRefGoogle Scholar
  43. 43.
    McRae, G.A., Coleman, C.E., Leitch, B.W.: The first step for delayed hydride cracking in zirconium alloys. J. Nucl. Mater. 396, 130–143 (2010)CrossRefGoogle Scholar
  44. 44.
    Metzger, D.R., Sauvé, R.G.: A self-induced stress model for simulating hydride formation at flaws. ASME PVP 326, Computer Technology: Application and Methodology, p. 137 (1996)Google Scholar
  45. 45.
    Metzger, D.R.: Unpublished research. Kinectrics Inc, Toronto, Ontario, Canada (1997)Google Scholar
  46. 46.
    Mills, W.J., Huang, F.H.: Delayed hydride cracking behavior for ZIRCALOY-2 plate. Eng. Fract. Mech. 39, 241–257 (1991)CrossRefGoogle Scholar
  47. 47.
    Northwood, D.O., Kosasih, U.: Hydrides and delayed hydrogen cracking in zirconium and its alloys. Int. Metal. Rev. 28, 92–121 (1983)CrossRefGoogle Scholar
  48. 48.
    Nuttall, K.: Some aspects of slow crack growth in hydrided Zr-2.5% Nb alloys. In: Effect of Hydrogen on Behavior of Materials, TMS-AIME, New York, pp. 441–452 (1976)Google Scholar
  49. 49.
    Nuttall, K., Rogowski, A.J.: Some fractographic aspects of hydrogen-induced delayed cracking in Zr-2.5 wt% Nb alloys. J. Nucl. Mater. 80, 279–290 (1979)CrossRefGoogle Scholar
  50. 50.
    Ostergren, W.J.: Masters Thesis, Brown University, Providence, RI, USA (1969)Google Scholar
  51. 51.
    Pan, Z.L.: Unpublished data. AECL-Chalk River Laboratories, Chalk River, Ontario, Canada (1999)Google Scholar
  52. 52.
    Pan, Z.L., Ritchie, I.G., Puls, M.P.: The terminal solid solubility of hydrogen and deuterium in Zr-2.5Nb alloys. J. Nucl. Mater. 228, 227–237 (1996)CrossRefGoogle Scholar
  53. 53.
    Perryman, E.C.W.: Pickering pressure tube cracking experience. Nucl. Eng. 17, 95–105 (1978)Google Scholar
  54. 54.
    Puls, M.P., Dutton, R., Stevens, R.L.: The chemical stress applied to creep and fracture theories—II. Application to the growth of sub-critical Griffith cracks. Acta Metall. 22, 639–647 (1974)CrossRefGoogle Scholar
  55. 55.
    Puls, M.P.: Hydrogen–induced delayed cracking: I. Strain energy effects on hydrogen solubility. Atomic Energy of Canada Ltd Report, Report No. AECL-6302 Atomic Energy of Canada Ltd, Chalk River Laboratories, Chalk River, Ontario, Canada (1978)Google Scholar
  56. 56.
    Puls, M.P.: Effects of crack tip stress states and hydride-matrix interaction stresses on delayed hydride cracking. Metall. Trans. A 21A, 2905–2917 (1990)Google Scholar
  57. 57.
    Puls, M.P., Leitch, B.W., Shi, S.Q.: The effect of applied stress on the accommodation energy and the solvi for the formation and dissolution of zirconium hydride. In: Moody, N.R., Thompson, A.W., Ricker, R.E., et al. (eds.) Hydrogen Effects on Material Behaviour and Corrosion Deformation Interactions, pp. 233–248. TMS (The Minerals, Metals & Materials Society),   (2003)Google Scholar
  58. 58.
    Puls, M.P.: Review of the thermodynamic basis for models of delayed hydride cracking rate in zirconium alloys. J. Nucl. Mater. 393, 350–367 (2009)CrossRefGoogle Scholar
  59. 59.
    Puls, M.P.: Comments on author’s reply to “Review of the thermodynamic basis for models of delayed hydride cracking rate in zirconium alloys”, M.P. Puls in J. Nucl. Mater. 393 (2009) 350–367. J Nucl Mater 399, 248–258 (2010)CrossRefGoogle Scholar
  60. 60.
    Resta Levi, M., Puls, M.P.: DHC behaviour of irradiated Zr-2.5Nb-2.5Nb pressure tubes up to 365 °C. In: 18th International Conference on Structural Mechanics in Reactor Technology (SMiRT 18), Beijing, China: Paper CW-31110-CONF-001 (2005)Google Scholar
  61. 61.
    Rice, J.R., Rosengren, G.F.: Plane strain deformation near a crack tip in a power-law hardening material. J. Mech. Phys. Solids 16, 1–12 (1968)MATHCrossRefGoogle Scholar
  62. 62.
    Rice, J.R., Johnson, M.A.: The role of large crack tip geometry changes in plane strain fracture. In: Kanninen, M.F., et al. (eds.) Inelastic Behavior of Solids, pp. 641–672. McGraw-Hill, New York (1970)Google Scholar
  63. 63.
    Rodgers, D.K., Coleman, C.E., Griffiths, M., et al.: In-reactor performance of pressure tubes in CANDU reactors. J. Nucl. Mater. 383, 22–27 (2008)CrossRefGoogle Scholar
  64. 64.
    Sagat, S., Puls, M.P.: Temperature limit for delayed hydride cracking in Zr-2.5Nb alloys. In: 17th International Conference on Structural Mechanics in Reactor Technology (SMiRT 17), Prague, Czech Republic: Paper G06-4 (2003)Google Scholar
  65. 65.
    Sagat, S., Coleman, C.E., Griffiths, M. et al.: The effect of fluence and irradiation temperature on delayed hydride cracking in Zr-2.5Nb. In: Garde, E.M., Bradley, E.R. (eds.) Zirconium in the Nuclear Industry: Tenth International Symposium, ASTM STP, vol 1245, pp. 35–61 (1994)Google Scholar
  66. 66.
    Sawatzky, A., Ledoux, G.A., Tough, R.L., et al.: Hydrogen diffusion in zirconium-niobium alloys. In: Veziroglu N. (ed.) Metal-Hydrogen Systems, pp. 109–120. Pergamon Press, Oxford, UK (1982)Google Scholar
  67. 67.
    Schofield, J.S., Darby, E.C., Gee, C.F.: Temperature and hydrogen concentration limits for delayed hydride cracking in irradiated Zircaloy. In: Moan, G.D., Rudling, P. (eds.) Zirconium in the Nuclear Industry: Thirteenth International Symposium ASTM STP, vol 1423, pp. 339–357 (2002)Google Scholar
  68. 68.
    Shek, G.K., Graham, D.B.: Effects of loading and thermal maneuvers on delayed hydride cracking in Zr-2.5Nb alloys. In: Van Swam, L.F.P., Eucken, C.M. (eds.) Zirconium in the Nuclear Industry: Eighth International Symposium ASTM STP, vol. 1023, pp. 89–110 (1989)Google Scholar
  69. 69.
    Shek, G.K., Jovanovic, M.T., Seahra, H., et al.: Hydride morphology and striation formation during delayed hydride cracking in Zr-2.5% Nb. J. Nucl. Mater. 231, 221–230 (1996)CrossRefGoogle Scholar
  70. 70.
    Shek, G.K.: The effect of material properties, thermal and loading history on delayed hydride cracking in Zr-2.5 Nb alloys. PhD Thesis, University of Manchester, Manchester, UK (1998)Google Scholar
  71. 71.
    Shek, G.K., Metzger, D.R.: Effect of hydrogen concentration on the threshold stress intensity factor for delayed hydride cracking in Zr-2.5Nb pressure tubes. In: Proceedings of PVP2011, 2011 ASME Pressure Vessels and Piping Division Conference, Paper PVP2011-57624 (2011)Google Scholar
  72. 72.
    Shih, C.F.: Tables of Hutchinson-Rice-Rosengren singular field quantities. Materials Research Laboratory, Brown University Report MRL E-147, Providence, RI, USA (1983)Google Scholar
  73. 73.
    Shih, D.S., Robertson, J.M., Birnbaum, H.K.: Hydrogen embrittlement of α-titanium: in-situ TEM studies. Acta Metall. 36, 111–124 (1988)CrossRefGoogle Scholar
  74. 74.
    Shi, S.Q., Puls, M.P.: Criteria for fracture initiation at hydrides in zirconium alloys I. Sharp crack tip. J. Nucl. Mater. 208, 232–242 (1994)CrossRefGoogle Scholar
  75. 75.
    Shi, S.Q., Puls, M.P.: Dependence of the threshold stress intensity factor on hydrogen concentration during delayed hydride cracking in zirconium alloys. J. Nucl. Mater. 218, 30–36 (1994)CrossRefGoogle Scholar
  76. 76.
    Shi, S.Q., Liao, M., Puls, M.P.: Modelling of time-dependent hydride growth at crack tips in zirconium alloys. Mod. Simul. Mater. Sci. Eng. 2, 1065–1078 (1994)CrossRefGoogle Scholar
  77. 77.
    Shi, S.Q., Shek, G.K., Puls, M.P.: Hydrogen concentration limit and critical temperatures for delayed hydride cracking in zirconium alloys. J. Nucl. Mater. 218, 189–201 (1995)CrossRefGoogle Scholar
  78. 78.
    Shi, S.Q., Puls, M.P.: Fracture strength of hydride precipitates in Zr-2.5Nb alloys. J. Nucl. Mater. 275, 312–317 (1999)CrossRefGoogle Scholar
  79. 79.
    Simpson, L.A.: The critical propagation event for hydrogen-induced slow crack growth in Zr-2.5%Nb. In: Miller, K.J., Smith, R.E. (eds.) Mechanical Behaviour of Materials, vol. 2, ICM3, pp. 445–455. Pergamon Press, Oxford, UK (1979)Google Scholar
  80. 80.
    Simpson, C.J., Ells, C.E.: Delayed hydrogen embrittlement of Zr-2.5wt.%Nb. J. Nucl. Mater. 52, 289–295 (1974)CrossRefGoogle Scholar
  81. 81.
    Simpson, L.A., Nuttall, K.: Factors controlling hydrogen assisted subcritical crack growth in Zr-2.5Nb alloys. In: Lowe, A.L., Parry, G.W. (eds.) Zirconium in the Nuclear Industry, ASTM STP vol. 633, pp. 608–629. ASTM, Philadelphia, PA (1977)CrossRefGoogle Scholar
  82. 82.
    Simpson, L.A., Cann, C.D.: Fracture toughness of zirconium hydride and its influence on the crack resistance of zirconium alloys. J. Nucl. Mater. 87, 303–316 (1979)CrossRefGoogle Scholar
  83. 83.
    Simpson, L.A., Puls, M.P.: The effects of stress, temperature and hydrogen content on hydride-induced crack growth in Zr-2.5 pct Nb. Metall. Trans. A 10A, 1093–1105 (1979)Google Scholar
  84. 84.
    Shmakov, A.A., Kalin, B.A., Ioltukhovskii, A.G.: A theoretical study of the kinetics of hydride cracking in zirconium alloys. Met. Sci. Heat Treat. 45, 315–320 (2003)CrossRefGoogle Scholar
  85. 85.
    Shrire, D., Grapengiesser, B., Hallstadius, L. et al.: Secondary defect behaviour in ABB BWR fuel. In: Proceedings of International Topical Meeting on Light Water Reactor Fuel Performance, ANS West Palm Beach, pp. 398–409 (1994)Google Scholar
  86. 86.
    Shmakov, A.A., Singh, R.N., Yan, D., et al.: A combined SIF and temperature model of delayed hydride cracking in zirconium materials. Comp. Mater. Sci. 39, 237–241 (2007)CrossRefGoogle Scholar
  87. 87.
    Smith, E.: The fracture of hydrided material during delayed hydride cracking (DHC) crack growth. Int. J. Press. Ves. Pip. 61, 1–7 (1995)CrossRefGoogle Scholar
  88. 88.
    Smith, E.: Near threshold delayed hydride crack growth in zirconium alloys. J. Mater. Sci. 30, 5910–5914 (1995)CrossRefGoogle Scholar
  89. 89.
    Smith, E.: The stress in a zirconium alloy due to the hydride precipitation misfit strains: I Hydride region in an infinite solid or a free surface. Manchester University—UMIST Materials Science Centre, Manchester, UK. Unpublished report prepared for Ontario Power Corporation, Toronto, Ontario, Canada (1995)Google Scholar
  90. 90.
    Tracey, D.M.: Finite element solutions for crack-tip behavior in small-scale yielding. Trans. ASME J. Eng. Mater. Tech. 98, 146–151 (1976)CrossRefGoogle Scholar
  91. 91.
    Wäppling, D., Massih, A.R., Ståhle, P.: Model for hydride-induced embrittlement in zirconium-based alloys. J. Nucl. Mater. 249, 231–238 (1997)CrossRefGoogle Scholar
  92. 92.
    Waisman, J.L., Sines, G., Robinson, L.B.: Diffusion of hydrogen in titanium alloys due to composition, temperature and stress gradients. Metall. Trans. 4, 291–302 (1973)CrossRefGoogle Scholar
  93. 93.
    Williams, M.L.: On the stress distribution at the base of a stationary crack. ASME Trans. J. Appl. Mech. 24, 109–114 (1957)MATHGoogle Scholar
  94. 94.
    Yan, D., Eadie, R.L.: The near threshold behaviour of delayed hydride cracking in Zr-2.5 wt% Nb. Int. Press. Vess. Pip. 77, 167–177 (2000)CrossRefGoogle Scholar
  95. 95.
    Yan, D., Eadie, R.L.: The critical length of the hydride cluster in delayed hydride cracking of Zr-2.5wt% Nb. J. Mater. Sci. 35, 5667–5672 (2000)CrossRefGoogle Scholar
  96. 96.
    Yan, D., Eadie, R.L.: An approach to explain the Stage I/II behaviour of the delayed hydride cracking velocity vs. KI curve for Zr-2.5 Nb. Scripta Mater. 43, 89–94 (2000)CrossRefGoogle Scholar
  97. 97.
    Yan, D., Eadie, R.L.: Calculation of the delayed hydride cracking velocity vs. KI curve for Zr-2.5 Nb by critical hydride cluster length. J. Mater. Sci. 37, 5299–5303 (2002)CrossRefGoogle Scholar
  98. 98.
    Zhenk, X.J., Luo, L., Metzger, D.R., et al.: A unified model of hydride cracking based on elasto-plastic energy release rate over a finite crack extension. J. Nucl. Mater. 218, 174–188 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  1. 1.MPP ConsultingOakvilleCanada

Personalised recommendations