Electromagnetic Waves in Metallic Wire Structures

  • S. T. Chui
  • Lei Zhou


With the advance of nanofabrication technology, more and more artificial materials have been proposed and developed in the past 20 years. Two representative examples are photonic and phononic crystals. The existence of the forbidden gap makes it possible to manipulate and control the flow of electromagnetic (EM) and acoustic waves. More recently, the focus has switched to metallic wire structures. Macroscopic metallic wire structures have been much studied in the past, partly connected with antenna applications. Recently, EM composite materials with metallic wire components have received much attention.


Phononic Crystal Magnetoelectric Effect Metallic Wire Circuit Equation Wire Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)CrossRefGoogle Scholar
  2. 2.
    S. John, Phys. Rev. Lett. 58, 2486 (1987)CrossRefGoogle Scholar
  3. 3.
    M.S. Kushwaha, P. Halevi, L. Dobrzynski, B. Djafari-Rouhani, Phys. Rev. Lett. 71, 2022 (1993)CrossRefGoogle Scholar
  4. 4.
    Z. Liu, X. Zhang, Y. Mao, Y.Y. Zhu, Z. Yang, C.T. Chan, P. Sheng, Science 289, 1734 (2000)Google Scholar
  5. 5.
    W. Wen, L. Zhou, J. Li, W. Ge, C.T. Chan, P. Sheng, Phys. Rev. Lett. 89, 223901 (2002)CrossRefGoogle Scholar
  6. 6.
    L. Zhou, W. Wen, C.T. Chan, P. Sheng, Appl. Phys. Lett. 82, 1012 (2003)CrossRefGoogle Scholar
  7. 7.
    B. Hou, H. Xie, W. Wen, P. Sheng, Phys. Rev. B 77, 125113 (2008)CrossRefGoogle Scholar
  8. 8.
    J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, IEEE Trans. Microw. Theory Tech. 47, 2075 (1999)CrossRefGoogle Scholar
  9. 9.
    T.J. Yen, W.J. Padilla, N. Fang, D.C. Vier, D.R. Smith, J.B. Pendry, D.N. Basov, X. Zhang, Science 303, P1494 (2004)CrossRefGoogle Scholar
  10. 10.
    D. R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 84, 4184 (2000)Google Scholar
  11. 11.
    R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77 (2001)CrossRefGoogle Scholar
  12. 12.
    C.R. Simovski, B. Sauviac, Radio Sci. 39, RS2014 (2004)Google Scholar
  13. 13.
    D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Science 305, 788 (2004)CrossRefGoogle Scholar
  14. 14.
    N. Fang, H. Lee, C. Sun, X. Zhang, Science 308, 534 (2005)CrossRefGoogle Scholar
  15. 15.
    T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, R. Hillenbrand, Science 313, 1959 (2006)CrossRefGoogle Scholar
  16. 16.
    V.G. Veselago, Sov. Phys. Usp. 10, 509 (1968)CrossRefGoogle Scholar
  17. 17.
    J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)CrossRefGoogle Scholar
  18. 18.
    S.T. Chui, J. Appl. Phys. 104, 013904 (2008)CrossRefGoogle Scholar
  19. 19.
    J.K. Gansel et al., Science 325, 1513 (2010)CrossRefGoogle Scholar
  20. 20.
    S.T. Chui, W.H. Wang, L. Zhou, Z.F. Lin, J. Phys. Condens. Matter 21, 292202 (2009)CrossRefGoogle Scholar
  21. 21.
    A.E. Ruehli, IEEE Trans. Microw. Theory Tech. MTT-22, 216 (1974)Google Scholar
  22. 22.
    L. Zhou, S.T. Chui, Phys. Rev. B 74, 035419 (2006)CrossRefGoogle Scholar
  23. 23.
    S.T. Chui, Y. Zhang, L. Zhou, J. Appl. Phys. 104, 034305 (2008)CrossRefGoogle Scholar
  24. 24.
    L. Zhou, S.T. Chui, Appl. Phys. Lett. 94, 041903 (2007)CrossRefGoogle Scholar
  25. 25.
    X. Huang, Y. Zhang, S.T. Chui, L. Zhou, Phys. Rev. B. 77, 235105 (2008)CrossRefGoogle Scholar
  26. 26.
    R.F. Harrington, Field Computation by Moment Methods (MacMillan, New York, 1968)Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of DelawareNewarkUSA
  2. 2.Department of PhysicsFudan UniversityShanghaiChina

Personalised recommendations