Skip to main content

Critical Correlation of Bidirectional Horizontal Ground Motions

  • Chapter
  • First Online:
  • 2344 Accesses

Part of the book series: Springer Series in Reliability Engineering ((RELIABILITY))

Abstract

The ground motion is a realization in space and simultaneous consideration of multiple components of ground motion is realistic and inevitable in the reliable design of structures . It is often assumed practically that there exists a set of principal axes in the ground motions. It is well recognized in the literature that the principal axes are functions of time and change their directions during the ground shaking. In the current structural design practice, the effect of the multi-component ground motions is often taken into account by use of the SRSS method (square root of the sum of the squares) or the CQC3 method (extended Complete Quadratic Combination rule).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rigato AB, Medina RA (2007) Influence of angle of incidence on seismic demands for inelastic single-storey structures subjected to bi-directional ground motions. Eng Struct 29(10):2593–2601

    Article  Google Scholar 

  2. Ghersi A, Rossi PP (2001) Influence of bi-directional ground motions on the inelastic response of one-storey in-plan irregular systems. Eng Struct 23(6):579–591

    Article  Google Scholar 

  3. Penzien J, Watabe M (1975) Characteristics of 3-dimensional earthquake ground motion. Earthq Eng Struct Dyn 3:365–374

    Article  Google Scholar 

  4. Clough RW, Penzien J (1993) Dynamics of structures, 2nd edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  5. Smeby W, Der Kiureghian A (1985) Modal combination rules for multicomponent earthquake excitation. Earthq Eng Struct Dyn 13:1–12

    Article  Google Scholar 

  6. Menun C, Der Kiureghian A (1998) A replacement for the 30 %, 40 %, and SRSS rules for multicomponent seismic analysis. Earthq Spectra 14(1):153–163

    Article  Google Scholar 

  7. Lopez OA, Chopra AK, Hernandez JJ (2000) Critical response of structures to multicomponent earthquake excitation. Earthq Eng Struct Dyn 29:1759–1778

    Article  Google Scholar 

  8. Athanatopoulou AM (2005) Critical orientation of three correlated seismic components. Eng Struct 27:301–312

    Article  Google Scholar 

  9. Nigam NC (1983) Introduction to random vibrations. MIT Press, London

    Google Scholar 

  10. Drenick RF (1970) Model-free design of aseismic structures. J Engrg Mech Div, ASCE 96(EM4):483–493

    Google Scholar 

  11. Shinozuka M (1970) Maximum structural response to seismic excitations. J Engrg Mech Div, ASCE 96(EM5):729–738

    Google Scholar 

  12. Iyengar RN, Manohar CS (1987) Nonstationary random critical seismic excitations. J Engrg Mech, ASCE 113(4):529–541

    Article  Google Scholar 

  13. Manohar CS, Sarkar A (1995) Critical earthquake input power spectral density function models for engineering structures. Earthq Eng Struct Dyn 24:1549–1566

    Article  Google Scholar 

  14. Abbas AM, Manohar CS (2002) Investigations into critical earthquake load models within deterministic and probabilistic frameworks. Earthq Eng Struct Dyn 31(4):813–832

    Article  Google Scholar 

  15. Abbas AM, Manohar CS (2002) Critical spatially-varying earthquake load models for extended structures. J Struct Engrg (JoSE, India) 29(1):39–52

    Google Scholar 

  16. Abbas AM, Manohar CS (2007) Reliability-based vector nonstationary random critical earthquake excitations for parametrically excited systems. Struct Safety 29:32–48

    Article  Google Scholar 

  17. Takewaki I (2001) A new method for nonstationary random critical excitation. Earthq Engrg Struct Dyn 30(4):519–535

    Article  Google Scholar 

  18. Takewaki I (2002) Seismic critical excitation method for robust design: a review. J Struct Engrg ASCE 128(5):665–672

    Article  Google Scholar 

  19. Takewaki I (2004) Critical envelope functions for non-stationary random earthquake input. Comput Struct 82(20–21):1671–1683

    Article  Google Scholar 

  20. Takewaki I (2004) Bound of earthquake input energy. J Struct Engrg ASCE 30(9):1289–1297

    Article  Google Scholar 

  21. Takewaki I (2006) Probabilistic critical excitation method for earthquake energy input rate. J Engrg Mech ASCE 132(9):990–1000

    Article  MathSciNet  Google Scholar 

  22. Takewaki I (2006) Critical excitation methods in earthquake engineering. Elsevier Science, Oxford

    Google Scholar 

  23. Sarkar A, Manohar CS (1996) Critical cross power spectral density functions and the highest response of multi-supported structures subjected to multi-component earthquake excitations. Earthq Eng Struct Dyn 25:303–315

    Article  Google Scholar 

  24. Sarkar A, Manohar CS (1998) Critical seismic vector random excitations for multiply supported structures. J Sound Vib 212(3):525–546

    Article  Google Scholar 

  25. Fujita K, Takewaki I (2010) Critical correlation of bi-directional horizontal ground motions. Eng Struct 32(1):261–272

    Article  Google Scholar 

  26. Fujita K, Yoshitomi S, Tsuji M, Takewaki I (2008) Critical cross-correlation function of horizontal and vertical ground motions for uplift of rigid block. Eng Struct 30(5):1199–1213

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendix 1: Computation of Coherence Function and Transformation of PSD Matrices

Let \( \ddot{u}_{g1} \) and \( \ddot{u}_{g2} \) denote the ground-motion accelerations along the building structural axes X 1 and X 2, respectively. Under the 2DGM along the principal axes of ground motions in the P–W model, \( \ddot{u}_{g1} \) and \( \ddot{u}_{g2} \) are described by

$$ \left\{ {\begin{array}{*{20}c} {\ddot{u}_{g1} } \\ {\ddot{u}_{g2} } \\ \end{array} } \right\} = \left[ {\begin{array}{*{20}c} {\cos \theta } & {\sin \theta } \\ { - \sin \theta } & {\cos \theta } \\ \end{array} } \right]\left\{ {\begin{array}{*{20}c} {\ddot{u}_{z1} } \\ {\ddot{u}_{z2} } \\ \end{array} } \right\}, $$
(11.21)

where \( \ddot{u}_{z1} \) and \( \ddot{u}_{z2} \) are the ground-motion accelerations along the principal axes of ground motions. θ denotes the angle between two sets of horizontal axes (= incident angle).

Let \( {\mathbf{S}}_{{\ddot{Z}\ddot{Z}}} (\omega) \) denote the auto PSD matrix of the components along the principal axes of ground motions. Then the PSD matrix, consisting of S 11, S 22, S 12, S 21, of the components along the building structural axes may be described as

$$ {\mathbf{S}}_{{\ddot{X}\ddot{X}}} (\omega) = \left[{\begin{array}{*{20}c} {\cos \theta} & {\sin \theta} \\ {- \sin \theta} & {\cos \theta} \\ \end{array}} \right]{\mathbf{S}}_{{\ddot{Z}\ddot{Z}}} (\omega)\left[{\begin{array}{*{20}c} {\cos \theta} & {- \sin \theta} \\ {\sin \theta} & {\cos \theta} \\ \end{array}} \right] $$
(11.22)
$$ {\mathbf{S}}_{{\ddot{Z}\ddot{Z}}} (\omega) = \left[{\begin{array}{*{20}c} {S_{{\ddot{Z}_{1} \ddot{Z}_{1}}} (\omega)} & 0 \\ 0 & {S_{{\ddot{Z}_{2} \ddot{Z}_{2}}} (\omega)} \\ \end{array}} \right] $$
(11.23)

The coherence function between the components of ground motions along the building structural axes is defined by

$$ \rho_{12} = \frac{{E\left[{\ddot{u}_{g1} \ddot{u}_{g2}} \right]}}{{\sqrt {E\left[{\ddot{u}_{g1}^{2}} \right]E\left[{\ddot{u}_{g2}^{2}} \right]}}}, $$
(11.24)

where E[ · ] denotes the ensemble mean. It is assumed in the P–W model that there is no correlation between the 2DGM along the principal axes of ground motions (i.e. \( E[\ddot{u}_{z1} \ddot{u}_{z2}] = 0 \)). Let γ org denote the ratio of the auto PSD functions \( S_{{\ddot{Z}_{2} \ddot{Z}_{2}}} (\omega)/S_{{\ddot{Z}_{1} \ddot{Z}_{1}}} (\omega) \) along the principal axes of ground motions. Substitution of \( \ddot{u}_{g1} \) and \( \ddot{u}_{g2} \) in Eq. (11.21) into Eq. (11.24) and some manipulations provide

$$ \rho_{12} (\gamma_{\text{org}},\theta) = \frac{{(1 - \gamma_{\text{org}})\sin 2\theta}}{{\sqrt {(1 + \gamma_{\text{org}})^{2} - (1 - \gamma_{\text{org}})^{2} \cos^{2} 2\theta}}} $$
(11.25)

Appendix 2: Horizontal Stiffness of Frame

Let u 1 and ϕ AB denote the horizontal displacement of the upper node in the frame and the angle of member rotation of column, respectively. When the horizontal force is denoted by P 1, the horizontal stiffness of the plane frame can be expressed as

$$ k_{1} = P_{1}/u_{1} = P_{1}/(H \cdot \phi_{AB}) $$
(11.26)

The extreme-fiber stress at the top of the column under one-directional horizontal input may be expressed by

$$ \sigma_{BA}^{1} \left(t \right) = \{6EI_{b}/(Z_{c} L_{1})\} \theta_{B} $$
(11.27)

From the moment equilibrium around the node B, the angle of rotation of the node B can be expressed by

$$ \theta_{B} = 3\phi_{AB}/[2 + 3({{I_{b}} \mathord{\left/{\vphantom {{I_{b}} {I_{c}}}} \right. \kern-\nulldelimiterspace} {I_{c}}}) \cdot ({H \mathord{\left/{\vphantom {H {L_{1}}}} \right. \kern-\nulldelimiterspace} {L_{1}}})] $$
(11.28)

Equation (11.28) and the equation of story equilibrium provide

$$ \phi_{AB} = \frac{{P_{1} H^{2} \{2 + 3({{I_{b}} \mathord{\left/{\vphantom {{I_{b}} {I_{c}}}} \right. \kern-\nulldelimiterspace} {I_{c}}}) \cdot ({H \mathord{\left/{\vphantom {H L}} \right. \kern-\nulldelimiterspace} L}_{1})\}}}{{12EI_{c} \{1 + 6({{I_{b}} \mathord{\left/{\vphantom {{I_{b}} {I_{c}}}} \right. \kern-\nulldelimiterspace} {I_{c}}}) \cdot ({H \mathord{\left/{\vphantom {H L}} \right. \kern-\nulldelimiterspace} L}_{1})\}}} $$
(11.29)

Then the story stiffness can be expressed by

$$ k_{1} = \frac{{12EI_{c} \{1 + 6({{I_{b}} \mathord{\left/{\vphantom {{I_{b}} {I_{c}}}} \right. \kern-\nulldelimiterspace} {I_{c}}}) \cdot ({H \mathord{\left/{\vphantom {H {L_{1}}}} \right. \kern-\nulldelimiterspace} {L_{1}}})\}}}{{H^{3} \{2 + 3({{I_{b}} \mathord{\left/{\vphantom {{I_{b}} {I_{c}}}} \right. \kern-\nulldelimiterspace} {I_{c}}}) \cdot ({H \mathord{\left/{\vphantom {H L}} \right. \kern-\nulldelimiterspace} L}_{1})\}}} $$
(11.30)

Appendix 3: Stochastic Response 1

The auto-correlation function of \( \sigma_{BA}^{1} (t) \) can be expressed by

$$ E\left[ {\sigma_{BA}^{1} (t_{1} )\sigma_{BA}^{1} (t_{2} )} \right] \hfill \\ = A_{{\sigma 1}}^{2} \int\limits_{0}^{{t_{1} }} {\int\limits_{0}^{{t_{2} }} {\left[ {c_{1} (\tau_{1} )c_{1} (\tau_{2} )g_{1} (t_{1} - \tau_{1} )g_{1} (t_{2} - \tau_{2} )E\left[ {w_{1} (\tau_{1} )w_{1} (\tau_{2} )} \right]} \right]d\tau_{1} d\tau_{2} } } $$
(11.31)

The auto-correlation function of w 1(t) can be described in terms of the auto PSD function S 11(ω) by

$$ E\left[{w_{1} (\tau_{1})w_{1} (\tau_{2})} \right] = \int\limits_{- \infty}^{\infty} {S_{11} (\omega)e^{{{\text{i}}\omega (\tau_{1} - \tau_{2})}} d\omega} $$
(11.32)

Equation (11.31) can then be modified to

$$ \begin{gathered} E\left[ {\sigma_{BA}^{1} (t_{1} )\sigma_{BA}^{1} (t_{2} )} \right] \hfill \\ = \int\limits_{ - \infty }^{\infty } {\left[ {\begin{array}{*{20}c} {{\text{A}}_{\sigma 1} \int\limits_{ 0}^{{{{t}}_{ 1} }} {{\text{c}}_{ 1} (\tau_{ 1} ){\text{g}}_{ 1} ({{t}}_{ 1} { - }\tau_{ 1} )(\cos \omega \tau_{ 1} {\text{ + i}}\sin \omega \tau_{ 1} ){\text{d}}\tau_{ 1} } } \\ { \times {\text{A}}_{\sigma 1} \int\limits_{ 0}^{{{{t}}_{ 2} }} {{\text{c}}_{ 1} (\tau_{ 2} ){\text{g}}_{ 1} ({{t}}_{ 2} { - }\tau_{ 2} )} (\cos \omega \tau_{ 2} {\text{ - i}}\sin \omega \tau_{ 2} ){\text{d}}\tau_{ 2} } \\ \end{array} } \right]} {\text{S}}_{ 1 1} (\omega ){\text{d}}\omega \hfill \\ \end{gathered} $$
(11.33)

By substituting t 1 = t 2 = t, τ 1 = τ 2 = τ in Eq. (11.33), the mean-squares \( E[\sigma_{BA}^{1} (t)^{2}] \) can be derived as

$$ E[\sigma_{BA}^{1} (t)^{2} ] = A_{\sigma 1}^{2} \int\limits_{ - \infty }^{\infty } {\{ B_{c} (t;\omega )^{2} + B_{s} (t;\omega )^{2} \} } S_{11} (\omega )d\omega $$
(11.34)

where

$$ B_{c} (t;\omega ) \equiv \int\limits_{0}^{t} {c_{1} (\tau )g_{1} (t - \tau )\cos \omega \tau d\tau } $$
(11.35a)
$$ B_{s} (t;\omega ) \equiv \int\limits_{0}^{t} {c_{1} (\tau )g_{1} (t - \tau )\sin \omega \tau d\tau } $$
(11.35b)

On the other hand, the component in the direction X 2 may be transformed into

$$ E\left[ {\sigma_{BA}^{2} (t_{1} )\sigma_{BA}^{2} (t_{2} )} \right]\\ = A_{{\sigma 2}}^{2} \int\limits_{0}^{{t_{1} }} {\int\limits_{0}^{{t_{2} }} {\left[ {c_{2} (\tau_{1} )c_{2} (\tau_{2} )g_{2} (t_{1} - \tau_{1} )g_{2} (t_{2} - \tau_{2} )E\left[ {w_{2} (\tau_{1} )w_{2} (\tau_{2} )} \right]} \right]} \,d\tau_{1} d\tau_{2} } $$
(11.36)

The auto-correlation function of w 2(t) can be described in terms of the auto PSD function S 22(ω) by

$$ E\left[ {w_{2} (\tau_{1} )w_{2} (\tau_{2} )} \right] = \int\limits_{ - \infty }^{\infty } {S_{22} (\omega )e^{{{\text{i}}\omega (\tau_{1} - \tau_{2} )}} d\omega } $$
(11.37)

The mean-squares \( E[\sigma_{BA}^{2} (t)^{2}] \) can be derived as

$$ E[\sigma_{BA}^{2} (t)^{2} ] = A_{{\sigma 2}}^{2} \int\limits_{ - \infty }^{\infty } {\{ C_{c} (t;\omega )^{2} + C_{s} (t;\omega )^{2} \} } S_{22} (\omega )d\omega, $$
(11.38)

where

$$ C_{c} (t;\omega) \equiv \int_{0}^{t} {c_{2} (\tau)g_{2} (t - \tau)\cos \omega \tau d\tau} $$
(11.39a)
$$ C_{s} (t;\omega ) \equiv \int\limits_{0}^{t} {c_{2} (\tau )g_{2} (t - \tau )\sin \omega \tau d\tau } $$
(11.39b)

Appendix 4: Stochastic Response 2

The cross-correlation function of \( \sigma_{BA}^{1} (t) \) and \( \sigma_{BA}^{2} (t) \) can be expressed as

$$ E\left[ {\sigma_{BA}^{1} (t_{1} )\sigma_{BA}^{2} (t_{2} )} \right] \hfill \\ = A_{\sigma 1} A_{\sigma 2} \int\limits_{0}^{{t_{1} }} {\int\limits_{0}^{{t_{2} }} {\left[ {c_{1} (\tau_{1} )c_{2} (\tau_{2} )g_{1} (t_{1} - \tau_{1} )g_{2} (t_{2} - \tau_{2} )E\left[ {w_{1} (\tau_{1} )w_{2} (\tau_{2} )} \right]} \right]} d\tau_{1} d\tau_{2} } $$
(11.40)

The cross-correlation function of w 1(t) and w 2(t) can be described in terms of the cross PSD function S 12(ω) by

$$ E\left[ {w_{1} (\tau_{1} )w_{2} (\tau_{2} )} \right] = \int\limits_{ - \infty }^{\infty } {S_{12} (\omega )e^{{{\text{i}}\omega (\tau_{1} - \tau_{2} )}} d\omega } $$
(11.41)

Let us introduce the definition of the cross PSD function \( S_{12} (\omega) = C_{12} (\omega) + {\text{i}}Q_{12} (\omega) \).

Then Eq. (11.41) can be expressed by

$$ E[w_{1} (\tau_{1} )w_{2} (\tau_{2} )] = \int\limits_{ - \infty }^{\infty } {\{ C_{12} (\omega ) + {\text{i}}Q_{12} (\omega )\} e^{{{\text{i}}\omega (\tau_{1} - \tau_{2} )}} d\omega } $$
(11.42)

The cross-term can be modified into

$$ \begin{gathered} E\left[{\sigma_{BA}^{1} (t)\sigma_{BA}^{2} (t)} \right] \hfill \\ = A_{\sigma 1} A_{\sigma 2} \int\limits_{- \infty}^{\infty} {\left[\begin{gathered} \int\limits_{0}^{t} {c_{1} (\tau)g_{1} (t - \tau)(\cos \omega \tau + {\text{i}}\sin \omega \tau)d\tau} \hfill \\ \times \int\limits_{0}^{t} {c_{2} (\tau)g_{2} (t - \tau)(\cos \omega \tau - {\text{i}}\sin \omega \tau)d\tau} \left\{{C_{12} (\omega) + {\text{i}}Q_{12} (\omega)} \right\} \hfill \\ \end{gathered} \right]} \,d\omega \hfill \\ = A_{\sigma 1} A_{\sigma 2} \int\limits_{- \infty}^{\infty} {\left[{\left\{{B_{c} (t;\omega) + {\text{i}}B_{s} (t;\omega)} \right\}\left\{{C_{c} (t;\omega) - {\text{i}}C_{s} (t;\omega)} \right\}\left\{{C_{12} (\omega) + {\text{i}}Q_{12} (\omega)} \right\}} \right]} \,d\omega \hfill \\ \end{gathered} $$
(11.43)

Another cross-correlation function \( E[\sigma_{BA}^{2} (t_{1})\sigma_{BA}^{1} (t_{2})] \) may be described by

$$ E[\sigma_{BA}^{2} (t)\sigma_{BA}^{1} (t)] \hfill \\ = A_{\sigma 2} A_{\sigma 1} \int\limits_{ - \infty }^{\infty } {\left[ {\{ C_{c} (t;\omega ) + {\text{i}}C_{s} (t;\omega )\} \{ B_{c} (t;\omega ) - {\text{i}}B_{s} (t;\omega )\} \{ C_{12} (\omega ) - {\text{i}}Q_{12} (\omega )\} } \right]} \,d\omega $$
(11.44)

By combining both cross terms, the corresponding term can be expressed finally by

$$ \begin{gathered} E[\sigma_{BA}^{1} (t)\sigma_{BA}^{2} (t)] + E[\sigma_{BA}^{2} (t)\sigma_{BA}^{1} (t)] \hfill \\ = 2A_{\sigma 1} A_{\sigma 2} \text{Re} \left[{\int\limits_{- \infty}^{\infty} {\left[{\{B_{c} (t;\omega) + {\text{i}}B_{s} (t;\omega)\} \{C_{c} (t;\omega) - {\text{i}}C_{s} (t;\omega)\} \{C_{12} (\omega) + {\text{i}}Q_{12} (\omega)\}} \right]} \,d\omega} \right] \hfill \\ = 2A_{\sigma 1} A_{\sigma 2} \int\limits_{- \infty}^{\infty} {\{f_{1} (t;\omega)C_{12} (\omega) + f_{2} (t;\omega)Q_{12} (\omega)\} d\omega} \hfill \\ \end{gathered} $$
(11.45)

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Takewaki, I., Moustafa, A., Fujita, K. (2013). Critical Correlation of Bidirectional Horizontal Ground Motions. In: Improving the Earthquake Resilience of Buildings. Springer Series in Reliability Engineering. Springer, London. https://doi.org/10.1007/978-1-4471-4144-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4144-0_11

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4143-3

  • Online ISBN: 978-1-4471-4144-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics