Experimental Evidence for the Role of Atherosclerosis in Calcific Aortic Valve Disease

  • Malayannan Subramaniam
  • Thomas C. Spelsberg
  • Nalini Marie Rajamannan


Calcific aortic stenosis is the most common indication for surgical valve replacement in the United States ( Currently, in 2012 surgical valve replacement is the number one indication for the treatment of this disease process (Bonow et al. 1998). For years, this disease has been described as a passive phenomena during which serum calcium attaches to the valve surface and binds to the leaflet to form nodules. Over decades, as aortic stenosis progressed, it will cause progressive left ventricular hypertrophy, left ventricular diastolic and systolic dysfunction, congestive heart failure, angina, arrhythmias, and syncope. Recent studies demonstrate an association between atherosclerotic risk factors and aortic valve disease. Although a unifying hypothesis for the role of atherosclerotic risk factors towards the mechanism of vascular and aortic valve disease is emerging, progress in studying the cell biology of this disease has been defining turning point in understanding the overall mechanisms.


Aortic Valve Mitral Valve Aortic Stenosis Familial Hypercholesterolemia Aortic Valve Stenosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams LD, Geary RL, McManus B, Schwartz SM. A comparison of aorta and vena cava medial message expression by cDNA array analysis identifies a set of 68 consistently differentially expressed genes, all in aortic media. Circ Res. 2000;87(7):623–31.PubMedCrossRefGoogle Scholar
  2. Aronow WS, Schwartz KS, Koenigsberg M. Correlation of serum lipids, calcium, and phosphorus, diabetes mellitus and history of systemic hypertension with presence or absence of calcified or thickened aortic cusps or root in elderly patients. Am J Cardiol. 1987;59(9):998–9.PubMedCrossRefGoogle Scholar
  3. Aronow WS, Ahn C, Kronzon I, Goldman ME. Association of coronary risk factors and use of statins with progression of mild valvular aortic stenosis in older persons. Am J Cardiol. 2001;88(6):693–5.PubMedCrossRefGoogle Scholar
  4. Becker CR, Majeed A, Crispin A, Knez A, Schoepf UJ, Boekstegers P, Steinbeck G, Reiser MF. CT measurement of coronary calcium mass: impact on global cardiac risk assessment. Eur Radiol. 2005;15(1):96–101.PubMedCrossRefGoogle Scholar
  5. Bellamy MF, Pellikka PA, Klarich KW, Tajik AJ, Enriquez-Sarano M. Association of cholesterol levels, hydroxymethylglutaryl coenzyme-A reductase inhibitor treatment, and progression of aortic stenosis in the community. [Comment]. J Am Coll Cardiol. 2002;40(10):1723–30.PubMedCrossRefGoogle Scholar
  6. Bonow RO, Carabello B, de Leon Jr AC, Edmunds Jr LH, Fedderly BJ, Freed MD, Gaasch WH, McKay CR, Nishimura RA, O’Gara PT, O’Rourke RA, Rahimtoola SH, Ritchie JL, Cheitlin MD, Eagle KA, Gardner TJ, Garson Jr A, Gibbons RJ, Russell RO, Ryan TJ, Smith Jr SC. Guidelines for the management of patients with valvular heart disease: executive summary. A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Committee on management of patients with valvular heart disease). Circulation. 1998;98(18):1949–84.PubMedCrossRefGoogle Scholar
  7. Boon A, Cheriex E, Lodder J, Kessels F. Cardiac valve calcification: characteristics of patients with calcification of the mitral annulus or aortic valve. Heart. 1997;78(5):472–4.PubMedGoogle Scholar
  8. Buja LM, Kovanen PT, Bilheimer DW. Cellular pathology of homozygous familial hypercholesterolemia. Am J Pathol. 1979;97:327–57.PubMedGoogle Scholar
  9. Caira FC, Stock SR, Gleason TG, McGee EC, Huang J, Bonow RO, Spelsberg TC, McCarthy PM, Rahimtoola SH, Rajamannan NM. Human degenerative valve disease is associated with up-regulation of low-density lipoprotein receptor-related protein 5 receptor-mediated bone formation. J Am Coll Cardiol. 2006;47(8):1707–12.PubMedCrossRefGoogle Scholar
  10. Chan KL, Ghani M, Woodend K, Burwash IG. Case-controlled study to assess risk factors for aortic stenosis in congenitally bicuspid aortic valve. Am J Cardiol. 2001;88(6):690–3.PubMedCrossRefGoogle Scholar
  11. Charo IF, Taubman MB. Chemokines in the pathogenesis of vascular disease. Circ Res. 2004;95(9):858–66.PubMedCrossRefGoogle Scholar
  12. Cheitlin M, Armstrong W, Aurigemma G, Beller G, Bierman F, Davis J, Douglas P, Faxon D, Gillam L, Kimball T, Kussmaul W, Pearlman A, Philbrick J, Rakowski H, Thys D, Antman E, Smith S, Alpert J, Gregoratos G, Anderson J, Hiratzka L, Faxon D, Hunt S, Fuster V, Jacobs A, Gibbons R, Russell R. ACC/AHA/ASE 2003 guideline update for the clinical application of echocardiography: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASE Committee to Update the 1997 Guidelines for the Clinical Application of Echocardiography). J Am Soc Echocardiogr. 2003;16(10):1091–110.PubMedGoogle Scholar
  13. Chui MC, Newby DE, Panarelli M, Bloomfield P, Boon NA. Association between calcific aortic stenosis and hypercholesterolemia: is there a need for a randomized controlled trial of cholesterol-lowering therapy? Clin Cardiol. 2001;24(1):52–5.PubMedCrossRefGoogle Scholar
  14. D’Agostino RB, Kannel WB, Belanger AJ, Sytkowski PA. Trends in CHD and risk factors at age 55–64 in the Framingham Study. Int J Epidemiol. 1989;18(3 Suppl 1):S67–72.PubMedGoogle Scholar
  15. Deutscher S, Rockette HE, Krishnaswami V. Diabetes and hypercholesterolemia among patients with calcific aortic stenosis. J Chronic Dis. 1984;37(5):407–15.PubMedCrossRefGoogle Scholar
  16. Drolet MC, Arsenault M, Couet J. Experimental aortic valve stenosis in rabbits. J Am Coll Cardiol. 2003;41(7):1211–7.PubMedCrossRefGoogle Scholar
  17. Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, Wang H, Cundy T, Glorieux FH, Lev D, Zacharin M, Oexle K, Marcelino J, Suwairi W, Heeger S, Sabatakos G, Apte S, Adkins WN, Allgrove J, Arslan-Kirchner M, Batch JA, Beighton P, Black GC, Boles RG, Boon LM, Borrone C, Brunner HG, Carle GF, Dallapiccola B, De Paepe A, Floege B, Halfhide ML, Hall B, Hennekam RC, Hirose T, Jans A, Juppner H, Kim CA, Keppler-Noreuil K, Kohlschuetter A, LaCombe D, Lambert M, Lemyre E, Letteboer T, Peltonen L, Ramesar RS, Romanengo M, Somer H, Steichen-Gersdorf E, Steinmann B, Sullivan B, Superti-Furga A, Swoboda W, van den Boogaard MJ, Van Hul W, Vikkula M, Votruba M, Zabel B, Garcia T, Baron R, Olsen BR, Warman ML, Osteoporosis-Pseudoglioma Syndrome Collaborative Group. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell. 2001;107(4):513–23.PubMedCrossRefGoogle Scholar
  18. Kawaguchi A, Miyatake K, Yutani C, Beppu S, Tsushima M, Yamamura T, Yamamoto A. Characteristic cardiovascular manifestation in homozygous and heterozygous familial hypercholesterolemia. Am Heart J. 1999;137:410–8.PubMedCrossRefGoogle Scholar
  19. Kawaguchi A, Yutani C, Yamamoto A. Hypercholesterolemic valvulopathy: an aspect of malignant atherosclerosis. Ther Apher Dial. 2003;7(4): 439–43.PubMedCrossRefGoogle Scholar
  20. Koh KP, Wang Y, Yi T, Shiao SL, Lorber MI, Sessa WC, Tellides G, Pober JS. T cell-mediated vascular dysfunction of human allografts results from IFN-{gamma} dysregulation of NO synthase. J Clin Invest. 2004;114(6):846–56.PubMedGoogle Scholar
  21. Lindroos M, Kupari M, Valvanne J, Strandberg T, Heikkila J, Tilvis R. Factors associated with calcific aortic valve degeneration in the elderly. Eur Heart J. 1994; 15(7):865–70.PubMedGoogle Scholar
  22. Little RD, Carulli JP, Del Mastro RG, Dupuis J, Osborne M, Folz C, Manning SP, Swain PM, Zhao SC, Eustace B, Lappe MM, Spitzer L, Zweier S, Braunschweiger K, Benchekroun Y, Hu X, Adair R, Chee L, FitzGerald MG, Tulig C, Caruso A, Tzellas N, Bawa A, Franklin B, McGuire S, Nogues X, Gong G, Allen KM, Anisowicz A, Morales AJ, Lomedico PT, Recker SM, Van Eerdewegh P, Recker RR, Johnson ML. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet. 2002;70(1):11–9.PubMedCrossRefGoogle Scholar
  23. Mohler ER, Sheridan MJ, Nichols R, Harvey WP, Waller BF. Development and progression of aortic valve stenosis: atherosclerosis risk factors–a causal relationship? A clinical morphologic study. Clin Cardiol. 1991;14(12):995–9.PubMedCrossRefGoogle Scholar
  24. Mohler 3rd ER, Adam LP, McClelland P, Graham L, Hathaway DR. Detection of osteopontin in calcified human aortic valves. Arterioscler Thromb Vasc Biol. 1997;17(3):547–52.PubMedCrossRefGoogle Scholar
  25. Mohler 3rd ER, Gannon F, Reynolds C, Zimmerman R, Keane MG, Kaplan FS. Bone formation and inflammation in cardiac valves. Circulation. 2001;103(11):1522–8.PubMedCrossRefGoogle Scholar
  26. Novaro GM, Tiong IY, Pearce GL, Lauer MS, Sprecher DL, Griffin BP. Effect of hydroxymethylglutaryl coenzyme a reductase inhibitors on the progression of calcific aortic stenosis. Circulation. 2001;104(18):2205–9.PubMedCrossRefGoogle Scholar
  27. O’Brien KD, Kuusisto J, Reichenbach DD, Ferguson M, Giachelli C, Alpers CE, Otto CM. Osteopontin is expressed in human aortic valvular lesions [comment]. Circulation. 1995;92(8):2163–8.PubMedCrossRefGoogle Scholar
  28. O’Brien KD, Reichenbach DD, Marcovina SM, Kuusisto J, Alpers CE, Otto CM. Apolipoproteins B, (a), and E accumulate in the morphologically early lesion of ‘degenerative’ valvular aortic stenosis. Arterioscler Thromb Vasc Biol. 1996;16(4):523–32.PubMedCrossRefGoogle Scholar
  29. Olsson M, Thyberg J, Nilsson J. Presence of oxidized low density lipoprotein in nonrheumatic stenotic aortic valves. Arterioscler Thromb Vasc Biol. 1999;19(5): 1218–22.PubMedCrossRefGoogle Scholar
  30. Peltier M, Trojette F, Sarano ME, Grigioni F, Slama MA, Tribouilloy CM. Relation between cardiovascular risk factors and nonrheumatic severe calcific aortic stenosis among patients with a three-cuspid aortic valve. Am J Cardiol. 2003;91(1):97–9.PubMedCrossRefGoogle Scholar
  31. Pohle K, Maffert R, Ropers D, Moshage W, Stilianakis N, Daniel WG, Achenbach S. Progression of aortic valve calcification: association with coronary atherosclerosis and cardiovascular risk factors. [See comment]. Circulation. 2001;104(16):1927–32.PubMedCrossRefGoogle Scholar
  32. Rabkin E, Aikawa M, Stone JR, Fukumoto Y, Libby P, Schoen FJ. Activated interstitial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves. Circulation. 2001;104(21):2525–32.PubMedCrossRefGoogle Scholar
  33. Rajamannan NM. Mechanisms of aortic valve calcification: the LDL-density-radius theory: a translation from cell signaling to physiology. Am J Physiol Heart Circ Physiol. 2010;298(1):H5–15.PubMedCrossRefGoogle Scholar
  34. Rajamannan NM, Sangiorgi G, Springett M, Arnold K, Mohacsi T, Spagnoli LG, Edwards WD, Tajik AJ, Schwartz RS. Experimental hypercholesterolemia induces apoptosis in the aortic valve. J Heart Valve Dis. 2001;10(3):371–4.PubMedGoogle Scholar
  35. Rajamannan NM, Subramaniam M, Springett M, Sebo TC, Niekrasz M, McConnell JP, Singh RJ, Stone NJ, Bonow RO, Spelsberg TC. Atorvastatin inhibits hypercholesterolemia-induced cellular proliferation and bone matrix production in the rabbit aortic valve. Circulation. 2002;105(22):2260–5.CrossRefGoogle Scholar
  36. Rajamannan NM, Edwards WD, Spelsberg TC. Hypercholesterolemic aortic-valve disease. N Engl J Med. 2003a;349(7):717–8.PubMedCrossRefGoogle Scholar
  37. Rajamannan NM, Subramaniam M, Rickard D, Stock SR, Donovan J, Springett M, Orszulak T, Fullerton DA, Tajik AJ, Bonow RO, Spelsberg T. Human aortic valve calcification is associated with an osteoblast phenotype. Circulation. 2003b;107(17):2181–4.PubMedCrossRefGoogle Scholar
  38. Rajamannan NM, Subramaniam M, Caira FC, Stock SR, Spelsberg TC. Atorvastatin inhibits hypercholesterolemia-induced calcification in the aortic valves via the Lrp5 receptor pathway. Circulation. 2005a;112(9 Suppl):I229–34.PubMedGoogle Scholar
  39. Rajamannan NM, Subramaniam M, Stock SR, Stone NJ, Springett M, Ignatiev KI, McConnell JP, Singh RJ, Bonow RO, Spelsberg TC. Atorvastatin inhibits calcification and enhances nitric oxide synthase production in the hypercholesterolaemic aortic valve. Heart. 2005b;91(6):806–10.PubMedCrossRefGoogle Scholar
  40. Rajamannan NM, Evans FJ, Aikawa E, Grande-Allen KJ, Demer LL, Heistad DD, Simmons CA, Masters KS, Mathieu P, O’Brien KD, Schoen FJ, Towler DA, Yoganathan AP, Otto CM. Calcific aortic valve disease: not simply a degenerative process: a review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: calcific aortic valve disease-2011 update. Circulation. 2011;124(16):1783–91.PubMedCrossRefGoogle Scholar
  41. Roberts WC, Ko JM. Frequency by decades of unicuspid, bicuspid, and tricuspid aortic valves in adults having isolated aortic valve replacement for aortic stenosis, with or without associated aortic regurgitation. Circulation. 2005;111(7):920–5.PubMedCrossRefGoogle Scholar
  42. Rosenhek R, Binder T, Porenta G, Lang I, Christ G, Schemper M, Maurer G, Baumgartner H. Predictors of outcome in severe, asymptomatic aortic stenosis. N Engl J Med. 2000;343(9):611–7.PubMedCrossRefGoogle Scholar
  43. Rye KA, Wee K, Curtiss LK, Bonnet DJ, Barter PJ. Apolipoprotein A-II Inhibits high density lipoprotein remodeling and lipid-poor apolipoprotein A-I formation. J Biol Chem. 2003;278(25):22530–6.PubMedCrossRefGoogle Scholar
  44. Sarphie TG. Anionic surface properties of aortic and mitral valve endothelium from New Zealand white rabbits. Am J Anat. 1985a;174:145–60.PubMedCrossRefGoogle Scholar
  45. Sarphie TG. Surface responses of aortic valve endothelia from diet-induced, hypercholesterolemic rabbits. Atherosclerosis. 1985b;54(3):283–99.PubMedCrossRefGoogle Scholar
  46. Sarphie TG. A cytochemical study of the surface properties of aortic and mitral valve endothelium from hypercholesterolemic rabbits. Exp Mol Pathol. 1986;44: 281–96.PubMedCrossRefGoogle Scholar
  47. Shao JS, Cheng SL, Pingsterhaus JM, Charlton-Kachigian N, Loewy AP, Towler DA. Msx2 promotes cardiovascular calcification by activating paracrine Wnt signals. J Clin Invest. 2005;115(5):1210–20.PubMedGoogle Scholar
  48. Shavelle DM, Takasu J, Budoff MJ, Mao S, Zhao XQ, O’Brien KD. HMG CoA reductase inhibitor (statin) and aortic valve calcium. [Comment]. Lancet. 2002;359(9312):1125–6.PubMedCrossRefGoogle Scholar
  49. Sprecher DL, Schaefer EJ, Kent KM, Gregg RE, Zech LA, Hoeg JM, McManus B, Roberts WC, Brewer Jr HB. Cardiovascular features of homozygous familial hypercholesterolemia: analysis of 16 patients. Am J Cardiol. 1984;54(1):20–30.PubMedCrossRefGoogle Scholar
  50. Stewart BF, Siscovick D, Lind BK, Gardin JM, Gottdiener JS, Smith VE, Kitzman DW, Otto CM. Clinical factors associated with calcific aortic valve disease. Cardiovascular Health Study. J Am Coll Cardiol. 1997;29(3):630–4.PubMedCrossRefGoogle Scholar
  51. Stokes W. The diseases of the heart and aorta. Dublin: Hodges & Smith; 1845. p. 211–2.Google Scholar
  52. Tabas I. Consequences of cellular cholesterol accumulation: basic concepts and physiological implications. J Clin Invest. 2002;110(7):905–11.PubMedGoogle Scholar
  53. Thukkani AK, McHowat J, Hsu FF, Brennan ML, Hazen SL, Ford DA. Identification of alpha-chloro fatty aldehydes and unsaturated lysophosphatidylcholine molecular species in human atherosclerotic lesions. Circulation. 2003;108(25):3128–33.PubMedCrossRefGoogle Scholar
  54. Towler DA, Bidder M, Latifi T, Coleman T, Semenkovich CF. Diet-induced diabetes activates an osteogenic gene regulatory program in the aortas of low density lipoprotein receptor-deficient mice. J Biol Chem. 1998;273(46):30427–34.PubMedCrossRefGoogle Scholar
  55. Whyte HM. The relative importance of the major risk factors in atherosclerotic and other diseases. Aust N Z J Med. 1976;6(5):387–93.PubMedCrossRefGoogle Scholar
  56. Wilmshurst PT, Stevenson RN, Griffiths H, Lord JR. A case–control investigation of the relation between hyperlipidaemia and calcific aortic valve stenosis. Heart. 1997;78(5):475–9.PubMedGoogle Scholar
  57. Wilson PW, Castelli WP, Kannel WB. Coronary risk prediction in adults (the Framingham Heart Study). Am J Cardiol. 1987;59(14):91G–4.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Malayannan Subramaniam
    • 1
  • Thomas C. Spelsberg
    • 1
  • Nalini Marie Rajamannan
    • 1
  1. 1.Department of Molecular Biology and BiochemistryMayo ClinicRochesterUSA

Personalised recommendations