Skip to main content

Behavior Unit Model for Content-Based Representation and Edition of 3D Video

  • Chapter
3D Video and Its Applications
  • 1049 Accesses

Abstract

The design of data structures is one of the most crucial problems when developing visual information processing systems. A well designed data structure and its processing algorithm should be developed to comply with the required functionality of each application. In this chapter, we present a novel data representation method for 3D video named behavior unit model. Intuitively speaking, a behavior unit is defined as a partial interval of a 3D video data stream in which an object performs a simple action such as stand-up, sit down, etc. Once a 3D video data stream is partitioned into a set of behavior units, we can realize content-based processing methods of 3D video data using the behavior units as atomic data entities: editing, summarization, and semantic description of a given 3D video data. The chapter introduces the topology dictionary, which is a general abstraction method for data stream of geometrical objects, to achieve the behavior unit-based representation of 3D video.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Raptor model provided courtesy of INRIA by the AIM@SHAPE Shape Repository.

  2. 2.

    A graph branch is a set of successive nodes linked two by two by a single edge. Two branches match together when all the nodes belonging to them match together.

  3. 3.

    A neighbor is a node belonging to an adjacent surface region. Neighboring nodes are connected by a Reeb graph edge at the same resolution level.

References

  1. Arikan, O., Forsyth, D.A.: Interactive motion generation from examples. ACM Trans. Graph. 21(3), 483–490 (2002)

    Article  MATH  Google Scholar 

  2. Sharf, A., Lewiner, T., Shamir, A., Kobbelt, L.: On-the-fly curve-skeleton computation for 3D shapes. Comput. Graph. Forum 26(3), 323–328 (2007)

    Article  Google Scholar 

  3. Baran, I., Popovic, J.: Automatic rigging and animation of 3D characters. ACM Trans. Graph. 26(3), 27 (2007)

    Article  Google Scholar 

  4. Cornea, N., Silver, D., Yuan, X., Balasubramanian, R.: Computing hierarchical curveskeletons of 3D objects. Vis. Comput. 21(11), 945–955 (2005)

    Article  Google Scholar 

  5. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fulkerson, B., Vedaldi, A., Soatto, S.: Localizing objects with smart dictionaries. In: Proc. of European Conference on Computer Vision, vol. 1, pp. 179–192 (2008)

    Google Scholar 

  7. Gray, R.M., Gersho, A.: Vector Quantization and Signal Compression. Kluwer Academic, Norwell (1992)

    MATH  Google Scholar 

  8. Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.L.: Topology matching for fully automatic similarity estimation of 3D shapes. In: Proc. of ACM SIGGRAPH, pp. 203–212 (2001)

    Google Scholar 

  9. Huang, P., Hilton, A., Starck, J.: Shape similarity for 3D video sequences of people. Int. J. Comput. Vis. 89(2–3), 362–381 (2010)

    Article  Google Scholar 

  10. Huang, P., Tung, T., Nobuhara, S., Hilton, A., Matsuyama, T.: Comparison of skeleton and non-skeleton shape descriptors for 3D video. In: Proc. of International Symposium on 3D Data Processing, Visualization and Transmission (2010)

    Google Scholar 

  11. James, D.L., Twigg, C.D.: Skinning mesh animations. ACM Trans. Graph. 24(3) (2005)

    Google Scholar 

  12. Carranza, J., Theobalt, C., Magnor, M., Seidel, H.-P.: Free-viewpoint video of human actors. ACM Trans. Graph. 22(3), 569–577 (2003)

    Article  Google Scholar 

  13. Lee, J., Chai, J., Reitsman, P.S.A., Hodgins, J.K., Pollard, N.S.: Interactive control of avatars animated with human motion data. ACM Trans. Graph. 21(3), 491–500 (2002)

    Google Scholar 

  14. Kho, Y., Garland, M.: Sketching mesh deformations. ACM Trans. Graph. 24(3), 934 (2005)

    Article  Google Scholar 

  15. Koenderink, J.: Solid Shape. MIT Press, Cambridge (1990)

    Google Scholar 

  16. Kovar, L., Gleicher, M., Pighin, F.H.: Motion graphs. ACM Trans. Graph. 21(3), 473–482 (2002)

    Article  Google Scholar 

  17. Palagyi, K., Kuba, A.: A parallel 3D 12-subiteration thinning algorithm. Graph. Models Image Process. 61(4), 199–221 (1999)

    Article  Google Scholar 

  18. Molina-Tanco, L., Hilton, A.: Realistic synthesis of novel human movements from a database of motion capture examples. In: IEEE Workshop on Human Motion (2000)

    Google Scholar 

  19. Mizuguchi, T., Buchanan, J., Calvert, T.: Data driven motion transitions for interactive games. In: Eurographics Short Presentations (2001)

    Google Scholar 

  20. Morse, M.: The Calculus of Variations in the Large. Am. Mathematical Society Colloquium Publication, vol. 18. AMS, New York (1934)

    MATH  Google Scholar 

  21. Ngo, C.-W., Ma, Y.-F., Zhang, H.-J.: Video summarization and scene detection by graph modeling. IEEE Trans. Circuits Syst. Video Technol. 15(2), 296–305 (2005)

    Article  Google Scholar 

  22. Paquet, E., Rioux, M.: A content-based search engine for VRML databases. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, pp. 541–546 (1998)

    Google Scholar 

  23. Park, S.I., Hodgins, J.K.: Capturing and animating skin deformation in human motion. ACM Trans. Graph. 25(3), 881–889 (2006)

    Article  Google Scholar 

  24. Pascucci, V., Scorzelli, G., Bremer, P.-T., Mascarenhas, A.: Robust on-line computation of Reeb graphs: Simplicity and speed. ACM Trans. Graph. 26(3), 58 (2007)

    Article  Google Scholar 

  25. Pearson, K.: On lines and planes of closest fit to systems of points in space. Philos. Mag. 2(6), 559–572 (1901)

    Google Scholar 

  26. Reeb, G.: On the singular points of a completely integrable Pfaff form or of a numerical function. C. R. Acad. Sci. Paris 222, 847–849 (1946)

    MathSciNet  MATH  Google Scholar 

  27. Samet, H.: Foundations of Multidimensional Metric Data Structures. Morgan Kaufmann, San Mateo (2006)

    MATH  Google Scholar 

  28. Schödl, A., Szeliski, R., Salesin, D., Essa, I.: Video textures. In: Proc. of ACM SIGGRAPH, pp. 489–498 (2000)

    Google Scholar 

  29. Shotton, J., Johnson, M., Cipolla, R.: Semantic texton forests for image categorization and segmentation. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition (2008)

    Google Scholar 

  30. Sorkine, O., Alexa, M.: As-rigid-as-possible surface modeling. In: Proc. 5th Eurographics Symposium on Geometry Processing, pp. 109–116 (2007)

    Google Scholar 

  31. Starck, J., Hilton, A.: Surface capture for performance-based animation. IEEE Comput. Graph. Appl. (2007)

    Google Scholar 

  32. Tung, T., Matsuyama, T.: Topology dictionary with Markov model for 3D video content-based skimming and description. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition (2009)

    Google Scholar 

  33. Tung, T.: An implementation of the augmented multiresolution Reeb graphs (aMRG) for shape similarity computation of 3D models. http://tonytung.org/

  34. Tung, T., Matsuyama, T.: Topology dictionary for 3D video understanding. IEEE Trans. Pattern Anal. Mach. Intell. (2012)

    Google Scholar 

  35. Tung, T., Schmitt, F.: The augmented multiresolution Reeb graph approach for content-based retrieval of 3D shapes. Int. J. Shape Model. 11(1), 91–120 (2005)

    Article  Google Scholar 

  36. Tung, T., Schmitt, F., Matsuyama, T.: Topology matching for 3D video compression. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition (2007)

    Google Scholar 

  37. Winn, J., Criminisi, A., Minka, T.: Object categorization by learned universal visual dictionary. In: Proc. of International Conference on Computer Vision, vol. 2, pp. 1800–1807 (2005)

    Google Scholar 

  38. Yeung, M., Yeo, B.L.: Segmentation of video by clustering and graph analysis. Comput. Vis. Image Underst. 71(1), 94–109 (1998)

    Article  Google Scholar 

  39. Zaharescu, A., Boyer, E., Horaud, R.: Topology-adaptive mesh deformation for surface evolution, morphing, and multi-view reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 823–837 (2011)

    Article  Google Scholar 

  40. Zaharia, T., Prêteux, F.: Indexation de maillages 3D par descripteurs de forme. In: Proc. Reconnaissance des Formes et Intelligence Artificielle (RFIA), pp. 48–57 (2002)

    Google Scholar 

  41. Ziv, J., Lempen, A.: A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory 23(3), 337–343 (1977)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Matsuyama, T., Nobuhara, S., Takai, T., Tung, T. (2012). Behavior Unit Model for Content-Based Representation and Edition of 3D Video. In: 3D Video and Its Applications. Springer, London. https://doi.org/10.1007/978-1-4471-4120-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4120-4_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4119-8

  • Online ISBN: 978-1-4471-4120-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics