Advertisement

Behavior Unit Model for Content-Based Representation and Edition of 3D Video

  • Takashi Matsuyama
  • Shohei Nobuhara
  • Takeshi Takai
  • Tony Tung

Abstract

The design of data structures is one of the most crucial problems when developing visual information processing systems. A well designed data structure and its processing algorithm should be developed to comply with the required functionality of each application. In this chapter, we present a novel data representation method for 3D video named behavior unit model. Intuitively speaking, a behavior unit is defined as a partial interval of a 3D video data stream in which an object performs a simple action such as stand-up, sit down, etc. Once a 3D video data stream is partitioned into a set of behavior units, we can realize content-based processing methods of 3D video data using the behavior units as atomic data entities: editing, summarization, and semantic description of a given 3D video data. The chapter introduces the topology dictionary, which is a general abstraction method for data stream of geometrical objects, to achieve the behavior unit-based representation of 3D video.

Keywords

Feature Vector Data Stream Morse Function Semantic Description Semantic Label 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Arikan, O., Forsyth, D.A.: Interactive motion generation from examples. ACM Trans. Graph. 21(3), 483–490 (2002) MATHCrossRefGoogle Scholar
  2. 2.
    Sharf, A., Lewiner, T., Shamir, A., Kobbelt, L.: On-the-fly curve-skeleton computation for 3D shapes. Comput. Graph. Forum 26(3), 323–328 (2007) CrossRefGoogle Scholar
  3. 3.
    Baran, I., Popovic, J.: Automatic rigging and animation of 3D characters. ACM Trans. Graph. 26(3), 27 (2007) CrossRefGoogle Scholar
  4. 4.
    Cornea, N., Silver, D., Yuan, X., Balasubramanian, R.: Computing hierarchical curveskeletons of 3D objects. Vis. Comput. 21(11), 945–955 (2005) CrossRefGoogle Scholar
  5. 5.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Fulkerson, B., Vedaldi, A., Soatto, S.: Localizing objects with smart dictionaries. In: Proc. of European Conference on Computer Vision, vol. 1, pp. 179–192 (2008) Google Scholar
  7. 7.
    Gray, R.M., Gersho, A.: Vector Quantization and Signal Compression. Kluwer Academic, Norwell (1992) MATHGoogle Scholar
  8. 8.
    Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.L.: Topology matching for fully automatic similarity estimation of 3D shapes. In: Proc. of ACM SIGGRAPH, pp. 203–212 (2001) Google Scholar
  9. 9.
    Huang, P., Hilton, A., Starck, J.: Shape similarity for 3D video sequences of people. Int. J. Comput. Vis. 89(2–3), 362–381 (2010) CrossRefGoogle Scholar
  10. 10.
    Huang, P., Tung, T., Nobuhara, S., Hilton, A., Matsuyama, T.: Comparison of skeleton and non-skeleton shape descriptors for 3D video. In: Proc. of International Symposium on 3D Data Processing, Visualization and Transmission (2010) Google Scholar
  11. 11.
    James, D.L., Twigg, C.D.: Skinning mesh animations. ACM Trans. Graph. 24(3) (2005) Google Scholar
  12. 12.
    Carranza, J., Theobalt, C., Magnor, M., Seidel, H.-P.: Free-viewpoint video of human actors. ACM Trans. Graph. 22(3), 569–577 (2003) CrossRefGoogle Scholar
  13. 13.
    Lee, J., Chai, J., Reitsman, P.S.A., Hodgins, J.K., Pollard, N.S.: Interactive control of avatars animated with human motion data. ACM Trans. Graph. 21(3), 491–500 (2002) Google Scholar
  14. 14.
    Kho, Y., Garland, M.: Sketching mesh deformations. ACM Trans. Graph. 24(3), 934 (2005) CrossRefGoogle Scholar
  15. 15.
    Koenderink, J.: Solid Shape. MIT Press, Cambridge (1990) Google Scholar
  16. 16.
    Kovar, L., Gleicher, M., Pighin, F.H.: Motion graphs. ACM Trans. Graph. 21(3), 473–482 (2002) CrossRefGoogle Scholar
  17. 17.
    Palagyi, K., Kuba, A.: A parallel 3D 12-subiteration thinning algorithm. Graph. Models Image Process. 61(4), 199–221 (1999) CrossRefGoogle Scholar
  18. 18.
    Molina-Tanco, L., Hilton, A.: Realistic synthesis of novel human movements from a database of motion capture examples. In: IEEE Workshop on Human Motion (2000) Google Scholar
  19. 19.
    Mizuguchi, T., Buchanan, J., Calvert, T.: Data driven motion transitions for interactive games. In: Eurographics Short Presentations (2001) Google Scholar
  20. 20.
    Morse, M.: The Calculus of Variations in the Large. Am. Mathematical Society Colloquium Publication, vol. 18. AMS, New York (1934) MATHGoogle Scholar
  21. 21.
    Ngo, C.-W., Ma, Y.-F., Zhang, H.-J.: Video summarization and scene detection by graph modeling. IEEE Trans. Circuits Syst. Video Technol. 15(2), 296–305 (2005) CrossRefGoogle Scholar
  22. 22.
    Paquet, E., Rioux, M.: A content-based search engine for VRML databases. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, pp. 541–546 (1998) Google Scholar
  23. 23.
    Park, S.I., Hodgins, J.K.: Capturing and animating skin deformation in human motion. ACM Trans. Graph. 25(3), 881–889 (2006) CrossRefGoogle Scholar
  24. 24.
    Pascucci, V., Scorzelli, G., Bremer, P.-T., Mascarenhas, A.: Robust on-line computation of Reeb graphs: Simplicity and speed. ACM Trans. Graph. 26(3), 58 (2007) CrossRefGoogle Scholar
  25. 25.
    Pearson, K.: On lines and planes of closest fit to systems of points in space. Philos. Mag. 2(6), 559–572 (1901) Google Scholar
  26. 26.
    Reeb, G.: On the singular points of a completely integrable Pfaff form or of a numerical function. C. R. Acad. Sci. Paris 222, 847–849 (1946) MathSciNetMATHGoogle Scholar
  27. 27.
    Samet, H.: Foundations of Multidimensional Metric Data Structures. Morgan Kaufmann, San Mateo (2006) MATHGoogle Scholar
  28. 28.
    Schödl, A., Szeliski, R., Salesin, D., Essa, I.: Video textures. In: Proc. of ACM SIGGRAPH, pp. 489–498 (2000) Google Scholar
  29. 29.
    Shotton, J., Johnson, M., Cipolla, R.: Semantic texton forests for image categorization and segmentation. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition (2008) Google Scholar
  30. 30.
    Sorkine, O., Alexa, M.: As-rigid-as-possible surface modeling. In: Proc. 5th Eurographics Symposium on Geometry Processing, pp. 109–116 (2007) Google Scholar
  31. 31.
    Starck, J., Hilton, A.: Surface capture for performance-based animation. IEEE Comput. Graph. Appl. (2007) Google Scholar
  32. 32.
    Tung, T., Matsuyama, T.: Topology dictionary with Markov model for 3D video content-based skimming and description. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition (2009) Google Scholar
  33. 33.
    Tung, T.: An implementation of the augmented multiresolution Reeb graphs (aMRG) for shape similarity computation of 3D models. http://tonytung.org/
  34. 34.
    Tung, T., Matsuyama, T.: Topology dictionary for 3D video understanding. IEEE Trans. Pattern Anal. Mach. Intell. (2012) Google Scholar
  35. 35.
    Tung, T., Schmitt, F.: The augmented multiresolution Reeb graph approach for content-based retrieval of 3D shapes. Int. J. Shape Model. 11(1), 91–120 (2005) CrossRefGoogle Scholar
  36. 36.
    Tung, T., Schmitt, F., Matsuyama, T.: Topology matching for 3D video compression. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition (2007) Google Scholar
  37. 37.
    Winn, J., Criminisi, A., Minka, T.: Object categorization by learned universal visual dictionary. In: Proc. of International Conference on Computer Vision, vol. 2, pp. 1800–1807 (2005) Google Scholar
  38. 38.
    Yeung, M., Yeo, B.L.: Segmentation of video by clustering and graph analysis. Comput. Vis. Image Underst. 71(1), 94–109 (1998) CrossRefGoogle Scholar
  39. 39.
    Zaharescu, A., Boyer, E., Horaud, R.: Topology-adaptive mesh deformation for surface evolution, morphing, and multi-view reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 823–837 (2011) CrossRefGoogle Scholar
  40. 40.
    Zaharia, T., Prêteux, F.: Indexation de maillages 3D par descripteurs de forme. In: Proc. Reconnaissance des Formes et Intelligence Artificielle (RFIA), pp. 48–57 (2002) Google Scholar
  41. 41.
    Ziv, J., Lempen, A.: A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory 23(3), 337–343 (1977) MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  • Takashi Matsuyama
    • 1
  • Shohei Nobuhara
    • 1
  • Takeshi Takai
    • 1
  • Tony Tung
    • 1
  1. 1.Graduate School of InformaticsKyoto UniversitySakyoJapan

Personalised recommendations